

the partition of the

WINNIN MININ MININ

A Multi-Probe System Ideal for Very Large Antenna Measurements

Ideal for very large antenna measurements. SG 128 is a bigger version of the SG 64 with 127 probes (+1 reference channel) and is particularly adapted to the measurement of BTS antennas.

Large dimensions for very large antenna measurements

SOLUTION FOR

- Antenna Measurement
- Linear Array Antenna Measurement
- Sub-System Antenna Measurement

MAIN FEATURES

Technology

- Near-field / Spherical
- Far-field

Measurement capabilities

- Gain
- Directivity
- Beamwidth
- Cross polar discrimination
- Sidelobe levels
- Front to Back ratio
- 1D, 2D and 3D radiation patterns
- Radiation pattern in any polarization (linear or circular)
- Antenna efficiency

Frequency bands

- SG128 6 GHz: 400 MHz to 6 GHz
- SG 128 18 GHz: 400 MHz to 18 GHz

Max. size of DUT

• 4.16 m

Max. weight of DUT

- 5 kg on polystyrene mast
- 25 kg on fiberglass mast
- 50 kg on metal mast

Typical dynamic range

• 70 dB

Oversampling

Elevation tilt by goniometer

SYSTEM CONFIGURATIONS

Software

Measurement control, data acquisition and post processing MVG WaveStudio

- Near-field/far-field transform
- MV-Sphere
- OTA measurement suite
- MVG WaveStudio

Advanced post processing

Equipment

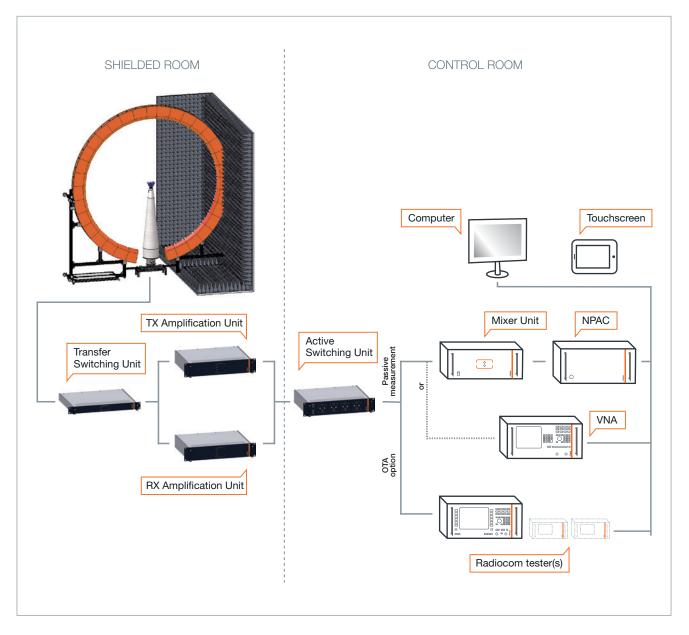
- Amplification unit
- Mixer unit
- N-PAC
- Uninterruptible power supply
- Instrumentation rack
- DUT positioner
- Primary synthetizer
- Auxiliary synthetizer

Add-ons

• Shielded anechoic chamber*

Accessories

- Polystyrene mast
- Acquisition PC & touch screen PC
- PVC chair
- Positioning laser pointer
- Laptop interface
- Head and hand phantoms
- Delystyrene platform mast for wide devices (tv, laptop)
- Fiberglass mast
- Metal mast
- □ Linear antenna pole mast
- O Reference antennas (horns, sleeve dipoles, loops, linear


array)

- Services
- Installation and calibration
- Warranty
- Project management
- Training
- Post warranty service plans

Included Optional ORequired

* See MVG-EMC product pages: mvg.link/EMC for more information

+ System Overview

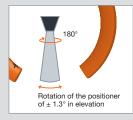
SG 128 is designed to characterize very large antennas, particularly base transceiver station (BTS). It uses analog RF signal generators to emit EM waves from the probe array to the antenna under test (AUT) or vice versa. It uses the NPAC as a RF receiver for antenna measurements. The NPAC also drives the electronic

scanning of the probe array. The NPAC includes the fastest and most accurate sources and receivers on the market. Adding the NPAC to your configuration is a great way to boost your SG 128 system capabilities. Alternatively, an existing VNA can be used if dedicated to the SG 128 system.

+ Standard system components

1) Arch

Other or additional configurations available upon customer request


2) Mast

Mast selection according

- to max. weight of DUT Linear antenna mast
- PVC chair
- Laptop interface
- TV mast

Patented Oversampling Э

Goniometer below positioner – size of arch, weight of DUT, and frequency range dependent.

Antennas

A choice of reference antennas (horns, dipoles and loops)

See Antenna Product Overview www.mvg.link/antennas

Absorbers and anechoic chambers

• A choice of standard, adapted and specialty absorbers

Anechoic chambers with integrated design, production,

installation and testing services

See Absorber Product Overview www.mvg.link/absorbers

System specifications*

	SG 128	
Measurement time for 11 frequencies**	< 4 min	
Typical dynamic range	70 dB	

10 dBi	20 dBi	30 dBi	
AUT	AUT	AUT	
 AUT	AUT	AUT	

PEAK GAIN ACCURACY

0.4 GHz - 0.8 GHz	$\pm 0.7 \text{ dB}$	$\pm 0.6 \text{ dB}$	$\pm 0.5 \text{ dB}$
0.8 GHz - 1 GHz	$\pm 0.5 \text{ dB}$	$\pm 0.5 \text{ dB}$	$\pm 0.5 \text{ dB}$
1 GHz - 6 GHz	$\pm 0.5 \text{ dB}$	$\pm 0.5 \text{ dB}$	$\pm 0.5 \text{ dB}$
Peak gain repeatability	$\pm 0.3 \text{ dB}$	$\pm 0.3 \text{ dB}$	$\pm 0.3 \text{ dB}$

- 10 dB SIDELOBES ACCURACY

0.4 GHz - 0.8 GHz	\pm 0.8 dB	$\pm 0.5 \text{ dB}$	\pm 0.4 dB
0.8 GHz - 1 GHz	$\pm 0.7 \text{ dB}$	$\pm 0.5 \text{ dB}$	\pm 0.4 dB
1 GHz - 6 GHz	$\pm 0.7 \text{ dB}$	$\pm 0.5 \text{ dB}$	± 0.4 dB

- 20 dB SIDELOBES ACCURACY

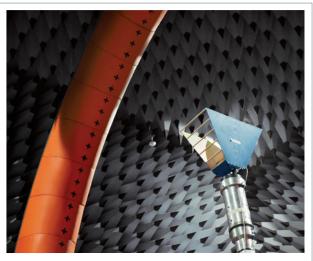
0.4 GHz - 0.8 GHz	\pm 2.6 dB	\pm 0.8 dB	\pm 0.5 dB
0.8 GHz - 1 GHz	\pm 2.1 dB	$\pm 0.7 \text{ dB}$	$\pm 0.5 \text{ dB}$
1 GHz - 6 GHz	± 2.1 dB	\pm 0.7 dB	$\pm 0.5 \text{ dB}$

- 30 dB SIDELOBES ACCURACY

0.4 GHz - 0.8 GHz	-	± 2.6 dB	± 0.8 dB
0.8 GHz - 1 GHz	-	± 2.1 dB	\pm 0.7 dB
1 GHz - 6 GHz	-	± 2.1 dB	\pm 0.7 dB

* Specifications given according to the following assumptions:

Controlled temperature and humidity during measurement


Specifications on radiation pattern are given for a normalized pattern

Measurements inside an anechoic chamber

• Peak gain is given for a \pm 0.3 dB of gain error on the reference antenna • DUT phase center does not exceed 15 cm from arch center

 Measurement performed with a suitable mast depending on the load and directivity of the DUT

** No oversampling, no averaging

Calibrating the SG 128

Mechanical characteristics*

5.4 m
10 x 10 x 10 m
2.61°
).02°
30°/s
Goniometer
2

DUT MAX. WEIGHT

Styrofoam mast	5 kg
Ultra rigid mast	50 kg
PVC chair	100 kg
BTS antenna pole mast	200 kg

* Centered load without oversampling

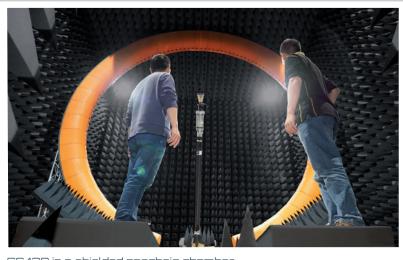
RF equipment characteristics

Number of probes	127 + 1 ref. channel
Frequency range	0.4 GHz to 6 GHz

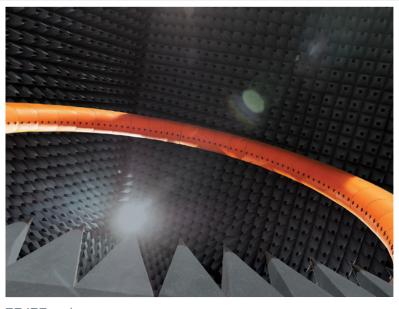
Maximum diameter of the DUT (m)

FREQUENCY			OF OVER		
(GHz)	x 1	x 2	x 3	x 5	x 10
0.4	3.40	3.40	3.40	3.40	3.40
1	4.16	4.16	4.16	4.16	4.16
2	3.29	4.16	4.16	4.16	4.16
3	2.20	4.16	4.16	4.16	4.16
4	1.65	3.29	4.16	4.16	4.16
5	1.32	2.64	3.95	4.16	4.16
6	1.10	2.20	3.29	4.16	4.16

+ Linear antenna measurement


Linear antenna measurement characteristics

	SG 128
Linear antenna measurement capability	Yes
Geometry	Spherical
Linear antenna max Length/Weight	416 cm / 200 kg
Measurement Time for 11 frequencies*	< 4 min


 * 1 port (no oversampling, no averaging), Linear antenna of 160 cm at GSM900

SG 128 system

SG 128 in a shielded anechoic chamber

SG 128 probe array

MVG - Testing Connectivity for a Wireless World

The Microwave Vision Group offers cutting-edge technologies for the visualization of electromagnetic waves. With advanced test solutions for antenna characterization, radar signature evaluation and electromagnetic measurements, we support company R&D teams in their drive to innovate and boost product development.

For more information: <u>www.mvg-world.com</u>

Contact us: <u>www.mvg-world.com/en/contact</u>