ANTENNA MEASUREMENT AND RADOME TEST SYSTEMS

OVERVIEW
The Microwave Vision Group (MVG) incorporates the technical expertise, product portfolios and infrastructures of four industry leaders: SATIMO, ORBIT/FR, AEMI and Rainford EMC.

Combining our strengths, we are dedicated to developing turn-key antenna measurement systems capable of meeting customer specific needs. We are committed to serving you through 18 offices worldwide, where you’ll find our sales, project management and customer support teams locally at your convenience.
From components and parts to full turn-key solutions, the right combination enables you to meet your specific measurement needs in a variety of testing configurations. Our offer allows you not only the facility of finding suitable off-the-shelf products, it also guarantees an upgrade path to enhance system capability.

MVG products are grouped into several families:

- **Absorbing materials**: pyramidal, wedged, convoluted; standard, clean room absorbers, rubberized absorbers, HP absorbers, EMC absorbers, walkways
- **Shielded anechoic and EMC chambers**
- **Positioners**: Rotary and Linear positioners, Model towers
- **RCS Pylons**: Standard and tailored models; choice of 3 tip types: AZ/EL Hat-type, AZ/EL Low profile, AZ only
- **Controllers**: Positioner controllers, Power Control Units, Local Control Units
- **RF system units**
- **Multi-probe systems**: Starlab, StarMIMO, SG 24, SG 32, SG 64, SG 128, StarBot 4200, StarBot 4300, SG 3000 F, SG 3000 M, SG 4100 F, T-DualScan, G-DualScan
- **Single probe systems**: µlab, CR, CR-M, TScan, FScan
- **Reflectors**: Serrated edge, Rolled edge
- **Measurement control, data acquisition and post processing software**: MiDAS, Insight, 959 Spectrum, MV-Echo, SatEnv, WaveStudio OTA measurement suite
- **Antennas and probes**: Biconic, diagonal horns, dual polarized feeds, dual polarized OEWs, dual polarized probes, electric sleeve dipoles, feed horns, magnetic dipoles, monocones, monopoles, open quad ridge horns, closed quad ridge horns, open-ended waveguides, linear arrays, standard gain horns, wide-band horns
The advanced technology in MVG systems supports our customers in their drive to innovate. Our aim: to give you a sharper technological edge and faster ROI (Return on Investment).

The speed and accuracy of our systems stems from two cutting-edge technologies:

1. MV-Scan™ Technology
2. Advanced Precision Electro-mechanical Technology

1/ MV-SCAN™ TECHNOLOGY: FAST - ACCURATE - SMART

MV-Scan™ Technology is integrated into all our multi-probe systems. With MV-Scan™, an array of probes is electronically scanned, increasing measurement speed while also gaining in measurement accuracy. It’s also smart technology that allows for choices in configurations in order to limit mechanical movements.

Fast

The need for faster measurement of antennas and radomes is a growing concern in the industry. Not only do our customers want to test significant numbers of beams at once, they want to test more frequently and in a short amount of time. Optimizing ROI is essential.

The electronic scanning of an array of ten to hundreds of probes using MV-Scan™ allows the measurement of a full cut in quasi-real time.

Accurate

High levels of accuracy and repeatability remain an absolute necessity for the needs of increasingly complex testing. We are able to ensure measurement accuracy of our systems as a result of several complementary factors.

- Precise knowledge of our systems’ error budget
- Comparison studies
- Reduction of mechanical movements
- Continuous probe calibration

Faster measurement time quickens the overall antenna development process
As you gain time in antenna testing and measurement, you gain time in the development of your new product.

Faster measurement time optimizes measurement facilities
A major R&D investment, facilities are used more efficiently as faster measurements allow more antennas to be measured in a shorter amount of time. ROI is maximized.
Precise knowledge of our systems’ error budget
Knowing the error budget is essential for predicting the accuracy and repeatability of a system. Each of our systems undergoes a validation process where the error budget is determined for reference during installation and maintenance.

Comparison studies
As a second measure in system validation, we perform comparison tests in different types of ranges (near-field, far-field, compact ranges, etc.). The results of these studies allow us to obtain the data necessary in fine tuning the accuracy and repeatability of our systems.

Continuous probe calibration
All our systems are equipped with a reference channel that is connected to the same amplification unit as the measurement probes. This allows continuous drift compensation, thus ensuring measurement data accuracy over time.

Reduction of mechanical movements
In most classical spherical single-probe measurement systems, the DUT (device under test) is rotated in azimuth from 0 to 360° and in elevation from 0 to 180° in front of a single, stationary probe to measure the field surrounding the device. MVG’s spherical multi-probe systems limit mechanical movements by rotating only the DUT 180° in azimuth while the fields surrounding the device is simultaneously scanned by the multi-probe arrays.

N-Probe Array Controller (N-PAC)
The N-Probe Array Controller is the heart of MVG’s multi-probe advanced measurement systems. It comprises the necessary components driving the system’s equipment (motors, probe array, instrumentation...). This powerful and highly accurate instrumentation provides real-time acquisition and system management thanks to an embedded FPGA. This includes an IF receiver offering a high dynamic acquisition range (up to 110 dB) and asynchronous communication with several remote PCs. Its massively parallel architecture brings new possibilities into the monitoring of complex measurement. The N-PAC comes with monitoring software to manually control the motors, select probes and visualize the pattern of the device under test in real time. All this via a touch screen PC or tablet.
The use of probe-arrays reduces the number of probe/DUT positions necessary to complete a test. This results in fewer mechanical movements. In addition, we offer a choice of geometries as well as different types of arrays to allow you to attain the most efficient configuration. Mechanical movements are thus minimized and speed and accuracy are maximized.

The right geometry for your application

An array of probes can be integrated into different system architectures.

- **Spherical geometry (SG systems – SG 24, SG 32, SG 64, etc.):** Tests any type of antenna. Necessary for OTA testing or for testing wide-beam and omni-directional antennas such as wireless devices.
- **Cylindrical geometry (StarLab, T-DualScan):**
 For semi-directive antennas such as BTS antennas
- **Planar geometry (T-DualScan):**
 For highly directive antennas such as phased arrays, satellites, communication antennas

Optimized positioning configurations

Various probe array and positioner configurations are possible depending on customer constraints and on the size of the object under test.

- **Stationary arch** - the positioner rotates the object under test 180°.
- **Stationary or movable arch** - the array can move in and out of the shielded anechoic chamber. The object under test rotates on a positioner or a turntable.

- **Linear probe array** - the array is fixed to a frame scanner; it moves on one axis.

- **Movable arch** - the array moves around the object under test. This innovative technique simplifies the measurement set-up for very large devices under test: the DUT remains stationary as the measurement array is displaced as required.
Unlimited scan resolution in both azimuth and elevation

Our multi-probe systems offer patented oversampling capabilities in order to achieve unlimited scan resolution. Oversampling is done by combining automated mechanical movements and the electronically scanned probe array.

The spacing between two probes of an array, for example 5.29° for the SG 64 is suitable for small antenna testing. For larger antennas, an additional mechanical rotation in elevation can complement the probe array azimuth scan. The positioning mast rotates in elevation, for instance ± 2.6° for the SG 64, in order to adjust the DUT to offset positions. This “fills in the gaps” and provides the possibility of unlimited sampling.

2/ ADVANCED PRECISION ELECTRO-MECHANICAL TECHNOLOGY

Integrated in all our systems, this technology allows:
- Real-time control of positioning sub-systems
- Fast measurement with high speed linear motors
- Increased accuracy of positioning systems and subsystems with the MV-Cor™ correction table service

Real-Time Full Control of Positioning Sub-systems

MVG positioner controllers offer real-time control of positioning subsystems up to 4 axes in parallel for use in near-field and far-field antenna measurement systems.

They may also be configured to drive planar scanners and general purpose far-field positioners that are encoder-based or involve simultaneous motion.

Our controllers have an on-the-fly real time discrete table triggering capability, real time on-the-fly position correction, and are made to work with various types of feedback such as EnDat absolute encoders, incremental encoders and tachometer velocity feedback.

High Speed Linear Motors

Our linear motors provide high acceleration for stepped-mode operation, scan speeds up to 1 m/s in continuous measurement mode and high acceleration in stepped-mode.

The main components of this drive system are an array of permanent magnets along the linear axis and an assembly of motor windings on the slide carriage.
The linear motor drive system offers several important advantages over conventional drive systems:

- No backlash
- High acceleration
- High motor force
- Excellent mechanical dynamics; for very fast stepped-mode measurements
- Continuous y-axis speed, up to 2 m/s for on-the-fly measurements

Combined with MV-Cor™ on-the-fly positioning error correction, linear motorization allows superb mechanical accuracy of the planar scanner while maintaining high measurement speed.

MV-Cor™ - Increased Accuracy

Using MV-Cor™, the corrected accuracy of mechanical systems is given by the repeatability of the system, the accuracy of the independent calibration equipment (like a laser tracker), and the stability of the environment (foundation, temperature, etc.).

This unique service increases the accuracy of positioning systems and subsystems (typical accuracy improvement is a factor of 2 or 3) by integrating geometrical error correction techniques into new or existing systems.

MV-Cor™ uses continuous feedback correction, the only method that compensates for both position commands/feedback and the variable gain measured by the control filter. Correction tables are loaded into the positioning controller.

The implementation of these correction tables is a two-stage process:

1. The raw positioning accuracy of the axes is measured using a laser tracker. The data is then analyzed, processed, and a set of geometrical error correction maps are built and loaded into the controller using a proprietary MVG calibration tool (Mect™ software).
2. The correction algorithms are activated and the positioning measurement is repeated to verify that the required accuracy is achieved.

The MV-Cor™ correction table service is a cost-effective solution to enhance range performance without replacing the entire positioning system. MV-Cor™ ensures minimum range down-time.

CASE STUDY

Accurate measurement for next generation, high performance antennas - StarLab 6-18 GHz multi-probe test system at Antenna Company

The challenge for The Antenna Company was to improve order turn-around time by bringing testing capabilities in-house, without compromising accuracy standards, and within a limited area of space. “The time saving is impressive!” says Dr Caratelli. “Firstly, we can turn projects around in a much quicker time frame as the testing system is immediately available to us; no more waiting in a queue for a third party testing house. Second, the StarLab is more advanced system than the external facility we were using. Previously, one 3D scan pattern for an average antenna would take around three or four hours, now we can characterize a 3D pattern in a matter of minutes. When we were using third party labs, we often faced issues with accuracy. With StarLab, we know that our measurements are accurate to within 0.6 dB, which means that we have full confidence that we are both using and submitting accurate measurements to our customers. Finally, our customers are some of the leading end-product vendors developing the wireless products of tomorrow. They impose tight confidentiality requirements on Antenna Company. Maintaining testing in house has enabled us to guarantee confidentiality for our designs as well as our customers.”
At MVG, we design antennas with outstanding performance in mind. It begins with a careful design process, alternating simulation and measurements. It extends to the use of the most advanced machining techniques and quality materials to achieve tight mechanical tolerances. That’s why all our antenna characteristics are outstanding. And that’s why we can guarantee the best electrical performance/operational bandwidth trade-off.

Antennas Designed for Outstanding Performance

The MVG antenna design team is an experienced multi-disciplinary group that considers all aspects of the antenna during the full development sequence based on a concurrent engineering approach. Our design processes, involving state-of-the-art numerical simulation and CAD tools, are continuously validated with prototyping and measurements, enabling tight performance optimization and absolute confidence in the final result.

MVG antennas are manufactured from quality materials and benefit from advanced numerical machining technology. All processes, from conception and design to manufacturing and final testing, are regulated by high quality standards. Our commitment to excellence is demonstrated by our certification as an ISO 9001:2008 compliant manufacturer and ISO 17025 for antenna test and calibration.

International Standards and Projects Meeting Future Technological Challenges

MVG is actively involved in the continued development of international standards in antenna measurements. Our experts participate in numerous European and national research programs as part of a team of key players in research and innovation. Several of these projects have been in cooperation with the French Centre National des Etudes Spatiales (CNES) and the European Space Agency (ESA).

A Complete Antenna Product Range

Our product portfolio includes antennas for measurement applications, high-power antennas, and antennas for telecommunications and navigation.

Antennas for Measurement Applications comprise both Reference Antennas and Measurement Probes and Feeds. The first are ideally suited for calibration reference within antenna measurement systems thanks to their high reliability and repeatability. The latter are precision microwave sensors to collect the characteristics of the device under test for all antenna measurement ranges (Planar, Cylindrical and Spherical Near-field, Far-Field, Compact Antenna Test Range, quasi monostatic RCS measurements, etc.).

Antennas for High Power Applications are specifically conceived to handle high input RF power with no degradation to the radiation parameters.

Telecommunication Antennas are designed to meet Telecom standards and protocols ranging from 50 MHz to 18 GHz.

Positioning Antennas encompass terminal antennas for GNSS receivers and for localization/safety applications.

http://www.mvg-world.com/antennas
Our teams*, in offices around the world, guide and support our customers from purchase, through design, to delivery and installation. Because we are local, we can assure speed and attention in project follow through. This includes customer support and maintenance once the system is in place.
MVG Services

CONSULTATION
- Discussions
- Site survey & facility assessment
- Solution assessment

DESIGN
- Project planning
- Chamber configuration
- System requirement analysis
- Block diagrams
- Power & error budget
- Mechanical & RF simulations

PRODUCTION
- Production planning
- Quality control through dedicated procedures

INTEGRATION
- Interface development
- Integration testing

INSTALLATION
- Equipment installations
- Testing
- Calibration
- Certification

SUPPORT
- Remote & on-site technical support
- Periodic calibration
- Refurbishment
- Upgrades
- Training
- Relocations
- Post-warranty plans

http://www.mvg-world.com/services
MVG offers a wide selection of solutions based on near-field, far-field and compact range measurement techniques for Antenna, EMC, RCS and Radome testing. Our solutions support the measurement needs of the Aerospace & Defense, Telecommunications and Automotive industries, as well as Academic and Research institutes.

Multi-probe systems
Our multi-probe systems utilize MV-Scan™ technology to conduct fast, accurate and smart antenna measurements and radome tests. MV-Scan™ Technology is integrated in all multi-probe systems, allowing major improvements in terms of measurement speed.

Single-probe systems
Our single-probe systems are able to control in real-time up to 4 axes in parallel in near-field and far-field measurements. The systems utilize the MV-Cor™ correction table service and a high speed linear motor to improve accuracy and measurement speed.

Our single-probe systems are the solution for measurement of high frequency bands - above 18 GHz.

When you purchase a single-probe system, know that you can upgrade your system to a multi-probe or hybrid system.

Hybrid systems
MVG is at the forefront of the industry with the launch of hybrid systems. Combining multi-probe and single-probe technologies, hybrid systems are the best compromise of accuracy, flexibility and measurement speed.

The hybrid systems consist of the best of two technologies:
- High speed electronically scanned multi-probe array
- Fast and accurate electro-mechanical systems for higher frequency bands of up to 400 GHz offered by single-probe
We offer two hybrid solutions, T-DualScan and G-DualScan. T-DualScan is a hybrid system for planar measurement. It measures highly directive antennas such as satellite or phased array antennas.

G-DualScan represents a step forward in spherical near-field measurements. It measures antennas with large dimensions and analyzes a very broad range of frequency bands.

> INNOVATION

At MVG, the diversity of our team is a key element of innovation.

Our workforce of more than 24 nationalities brings us international insight and perspective allowing us to continue to compete on a global scale. MVG boasts 4 Research and Development (R&D) facilities in Paris, Rome, Brest and San Diego. Our R&D teams work across borders in the collaboration and creation of innovative solutions. As of today, we hold 22 international patents and regularly publish technical papers in major international industry conferences and publications. We believe that collaborative work generates insight and invention. That is why, beyond the strong partnerships we currently maintain with CNES, ESA, and several universities, we look forward to creating more partnerships with our customers, industry leaders, and government.
Quick Guide: MVG Software for Antenna Measurement

<table>
<thead>
<tr>
<th>Name</th>
<th>WaveStudio OTA measurement suite</th>
<th>959 Spectrum</th>
<th>Midas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Data acquisition & analysis - OTA measurements</td>
<td>Data acquisition & analysis - Antenna measurement</td>
<td>Data acquisition & analysis - Antenna measurement</td>
</tr>
<tr>
<td>Objective</td>
<td>• OTA measurements & Analysis • Setup and batching in pre-measurement module • Provide fast & flexible accurate OTA measurement results</td>
<td>• Automation of the measurement • Provide common interface for both DA and Aria • Analysis & presentation of results</td>
<td>• Automation of the measurement • Display measurement during acquisition process • Analysis & presentation of results</td>
</tr>
<tr>
<td>Key features</td>
<td>• Batching capabilities • 3 modules, 1 interface • Supports all current protocols • THP, TIS, A-GPS, conducted, +</td>
<td>• Quicklook plots • Multi-threaded kernal • Enhanced calibration capabilities - Rotatable 3D plots - Customizable interface</td>
<td>• Multi-axis control with linked axis capabilities • Continuous step or spin measurement mode • Unlimited shape area - 2D or 3D plots - Zooming, markers, - Comparison of pattern in different files</td>
</tr>
<tr>
<td>MV-Echo</td>
<td>Insight</td>
<td>SatEnv</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Echo reduction of antenna measurements</td>
<td>Post-processing and model sourcing for numerical computations in large EM problems</td>
<td>Measurement control, data acquisition and data processing-antenna measurement</td>
<td></td>
</tr>
<tr>
<td>• Filtering out echoes in near-field and far-field measurements</td>
<td>• Compute equivalent source models</td>
<td>• Manage measurement campaigns</td>
<td></td>
</tr>
<tr>
<td>• Optimization of the AUT minimum sphere</td>
<td>• Provide diagnosis of antenna radiation pattern</td>
<td>• Control various axes</td>
<td></td>
</tr>
<tr>
<td>• Improvement of accuracy in antenna measurement performance</td>
<td>• Detect spurious radiation</td>
<td>• Provide data visualization & processing for analysis</td>
<td></td>
</tr>
<tr>
<td>• Echo filters for NF and FF</td>
<td>• Computation of authentic EM current distributions and extreme near-field of antenna</td>
<td>• Controllers for mechanical axes positioning</td>
<td></td>
</tr>
<tr>
<td>• Modal filtering algorithms</td>
<td>• 3D equivalent current distribution reconstruction</td>
<td>• Frequency axes for spectrum sweeping</td>
<td></td>
</tr>
<tr>
<td>• Modules in the Spherical Wave Harmonics domain</td>
<td>• Definition of 3D surface</td>
<td>• Data processing NF to FF - average, minimum, maximum, standard deviation gain,...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Currents to near-field transformation</td>
<td>• External Library (DLL) additions possible</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QR Code</th>
<th>QR Code</th>
<th>QR Code</th>
</tr>
</thead>
</table>
Quality Products and Services, the Key to Customer Satisfaction

Satisfied Customers on Three Continents

A portfolio of key accounts:
AIRCUS, BAE, BMW, BOEING, CNES, EADS, ERICSSON, ESA, HUAWEI, IAI, INTEL, LOCKHEED MARTIN, NASA, NOKIA, NORTHROP GRUMMAN, PANASONIC, QUALCOMM, RAYTHEON, RENAULT, SAMSUNG and ZTE

QUALITY MANAGEMENT AT MVG

MVG is ISO 9001: 2008 certified. This certificate ensures that:
• Our products meet customer and applicable regulatory requirements
• Our processes aim at continuous improvement of customer satisfaction and conformity of our products to requirements

CERTIFICATION COMPLIANCE

Our systems are particularly well suited for testing wireless devices in active mode. It is our company strategy to follow the evolution of the different telecommunication protocols and to be present in the standardization committees to actively contribute to the drafting of the test plan.
• CTIA (International Association for the Wireless Telecommunication Industry)

We are a member of the CTIA working groups, focusing on the Over the Air measurement protocols for the CDMA, GSM, UMTS, TDMA and analogue protocols. Both our SG 24 and SG 64 can perform measurements in compliance with the CTIA standards.

In addition, our U.S. laboratory in Atlanta has received the CTIA 3.1 accreditation and our SG systems are on the CTIA Authorized Equipment List.

Several of our customers, including test laboratories, mobile manufacturers and antenna design houses have CTIA accredited systems, using MVG equipment.

Our own CTIA authorized test and calibration lab in Kennesaw, GA (USA) also offers measurement calibration and services.

We are also part of the CTIA’s Converged Devices ad-hoc group to integrate Wi-Fi into the CTIA OTA test plan.

ISO 17025 certification and A2L accreditation* concerning calibration and electrical quality of our measurement facilities.

* The scope of accreditation is location-dependent and does not include the entire scope of MVG activities.

• COST (European Cooperation in Science and Technology) and COST IC1004 IC1004 (Cooperative Radio Communications for Green Smart Environments)

We have been part of COST273, and COST2100 over the past years and now are part of the COSTIC1004 TWGO (Topical Working Group on MIMO OTA) in charge of supporting the Wireless Industry in developing the standards for testing new generation wireless terminals.

• 3GPP (3rd Generation Partnership Project)

We are part of the 3GPP working group, the scope of which is to produce technical specifications and technical reports for a 3rd generation mobile system. The 3GPP covers all GSM (including GPRS and EDGE) and W-CDMA specifications (UMTS).
Sampling steps are based on the minimum measured wavelength (λ_{min}).

FIELD REGIONS

For spherical measurements, the required scan area is calculated according to the following formula:

- $D = \text{The minimum diameter of the sphere enclosing the antenna}$
- $R_{\text{min}} = D / 2$ (radius of the minimum sphere)
- $R = \text{Measurement distance}$
- $R > D^2 / 2 \lambda_{\text{min}}$

Sampling principle:

\[D_{\text{sampling}} = \Delta \theta = \Delta \phi = \lambda_{\text{min}} / 2 R_{\text{min}} \]

For planar and cylindrical measurements, the required scan area is calculated according to the following formula:

\[\text{Scan length} = D + 2 \cdot L \cdot \tan(\alpha) \]

Where:
- α is the relevant data angle in far-field
- L, the distance between the probe and the AUT
- D, the antenna size

Sampling principle:

\[D_{\text{sampling}} = \lambda_{\text{max}} / 2 \]
Quick Guide: MVG Antenna Measurement Solutions

System name

<table>
<thead>
<tr>
<th></th>
<th>StarLab</th>
<th>StarMIMO</th>
<th>SG 32</th>
<th>SG 24</th>
<th>SG 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Antenna measurement</td>
<td>MIMO OTA testing</td>
<td>Antenna measurement</td>
<td>Antenna measurement</td>
<td>Antenna measurement</td>
</tr>
<tr>
<td></td>
<td>Linear array antenna</td>
<td>MIMO measurement</td>
<td>Linear array antenna measurement</td>
<td>MIMO measurement</td>
<td>MIMO measurement</td>
</tr>
<tr>
<td></td>
<td>OTA testing</td>
<td></td>
<td>OTA testing</td>
<td>Linear array antenna measurement</td>
<td>Linear array antenna measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIMO</td>
<td>MIMO</td>
<td>MIMO</td>
</tr>
</tbody>
</table>

Technology

<table>
<thead>
<tr>
<th></th>
<th>Near-field / Spherical</th>
<th>MIMO</th>
<th>Near-field / Spherical</th>
<th>Near-field / Spherical</th>
<th>Near-field / Spherical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency bands

<table>
<thead>
<tr>
<th></th>
<th>StarLab 6 GHz: 650 MHz to 6 GHz</th>
<th>StarLab 18 GHz: 650 MHz to 18 GHz</th>
<th>400 MHz to 6 GHz depending on the specification of the spatial channel emulator</th>
<th>SG 32 - 6 GHz: 800 MHz to 6 GHz</th>
<th>SG 32 - 18 GHz: 800 MHz to 18 GHz</th>
<th>SG 24 - Compact: 650 MHz to 6 GHz</th>
<th>SG 24 - Standard: 400 MHz to 6 GHz</th>
<th>SG 24 - Large: 400 MHz to 6 GHz</th>
<th>SG 64 - Compact, SG 64 - Standard and SG 64 - Large: 400 MHz to 6 GHz</th>
<th>SG 64 - 18 GHz: 400 MHz to 18 GHz</th>
<th>SG 64 - LF: 70 MHz to 6 GHz</th>
<th>500 MHz - 18 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45 cm for spherical set-up</td>
<td>2.7m x 45 cm for cylindrical set up</td>
<td>depending on the number of probes</td>
<td>84 cm</td>
<td>1.79 m for SG 24 - L</td>
<td>2.73 m for SG 64 - L</td>
</tr>
</tbody>
</table>

Max size of DUT

<table>
<thead>
<tr>
<th></th>
<th>Low to High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 times faster than standard</td>
</tr>
</tbody>
</table>

Industries

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Website product page

- [Multi-Probe](http://www.mvg-world.com/starlab)
- [Quick Guide: MVG Antenna Measurement Solutions](http://www.mvg-world.com/fr/StarMIMO)
- [SG 32](http://www.mvg-world.com/fr/SG_32)
- [SG 24](http://www.mvg-world.com/fr/SG_24)
- [SG 64](http://www.mvg-world.com/fr/SG_64)
<table>
<thead>
<tr>
<th>System</th>
<th>Antenna measurement</th>
<th>Applications</th>
<th>Technology</th>
<th>Frequency bands</th>
<th>Max size of DUT</th>
<th>Website product page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG 128</td>
<td></td>
<td>• Vehicle testing</td>
<td>Near-field / Spherical, Far-field</td>
<td>70 MHz to 6 GHz</td>
<td>4.16 m</td>
<td>http://www.mvg-world.com/fr/SG_128</td>
</tr>
<tr>
<td>SG 3000 F</td>
<td></td>
<td>• Vehicle testing</td>
<td>Near-field / Spherical, Far-field</td>
<td>400 MHz to 6 GHz</td>
<td>2.4 m x 6 m (W x L)</td>
<td>http://www.mvg-world.com/fr/SG_3000F</td>
</tr>
<tr>
<td>SG 3000 M</td>
<td></td>
<td>• Radar testing</td>
<td>Near-field / Spherical, Far-field</td>
<td>System optimized for X band</td>
<td>2.40 m Ø x 1.0 m deep</td>
<td>http://www.mvg-world.com/fr/SG_3000M</td>
</tr>
<tr>
<td>SG 4100 F</td>
<td></td>
<td>• Radar antenna testing</td>
<td>Near-field / Spherical, Far-field</td>
<td>System optimized for S band</td>
<td>1 m x 1 m</td>
<td>http://www.mvg-world.com/fr/SG_4100F</td>
</tr>
<tr>
<td>Starbot 4200</td>
<td></td>
<td>• Aircraft/ vehicle in situ antenna characterization</td>
<td>Near-field / Spherical, Far-field</td>
<td>System optimized for S band but customizable from 70 MHz to 18 GHz (up to 40 GHz with single-probe)</td>
<td>500 MHz - 18 GHz</td>
<td>http://www.mvg-world.com/fr/Starbot_4200</td>
</tr>
<tr>
<td>Starbot 4300</td>
<td></td>
<td>• Radar antenna testing</td>
<td></td>
<td></td>
<td></td>
<td>http://www.mvg-world.com/fr/Starbot_4300</td>
</tr>
</tbody>
</table>

- System optimized for S band but operational over 1 to 6 GHz or 1 to 18 GHz
- Low to High
- 10 times faster than standard
- Aerospace & Defense
- Telecom
- Automotive

- Aerospace & Defense
- Telecom
- Automotive
<table>
<thead>
<tr>
<th>System name</th>
<th>µ-Lab</th>
<th>CR-M</th>
<th>Compact Range</th>
<th>FScan</th>
<th>TScan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>• Chip measurements</td>
<td>• Characterization of small and high gain antennas</td>
<td>• Antenna measurement</td>
<td>• High gain antenna testing</td>
<td>• Phased array antenna testing</td>
</tr>
<tr>
<td></td>
<td>• Miniature connectorized antenna measurements</td>
<td>• Millimeter wave applications</td>
<td>• Radarome measurement</td>
<td>• Near-field focused antenna testing,</td>
<td>• Near-field focused antenna testing</td>
</tr>
<tr>
<td></td>
<td>• Measurements of laptops and other devices</td>
<td>• Production testing</td>
<td>• RCS measurement</td>
<td>• Phased array antenna measurement</td>
<td>• Array illumination assessment</td>
</tr>
<tr>
<td></td>
<td>• Miniature connectorized antenna measurements</td>
<td>• Production testing</td>
<td>• Array element failure analysis</td>
<td>• Array illumination assessment</td>
<td>• Array element failure analysis</td>
</tr>
<tr>
<td>Technology</td>
<td>• Near-field / Spherical</td>
<td>Compact Range</td>
<td>Compact Range</td>
<td>• Near-field / Planar</td>
<td>• Near-field / Planar</td>
</tr>
<tr>
<td></td>
<td>• Far-field / Spherical</td>
<td></td>
<td></td>
<td>• Optional: Near-field / Planar</td>
<td>• Optional: Near-field / Planar</td>
</tr>
<tr>
<td>Frequency bands</td>
<td>• 50 - 110 GHz</td>
<td>CR-M12: 8 - 110 GHz</td>
<td>CR-M14: 4 - 110 GHz</td>
<td>• Small: 2 - 110 GHz</td>
<td>• Near-field / Planar</td>
</tr>
<tr>
<td></td>
<td>• 18 - 50 GHz optional</td>
<td>CR-M16: 4 - 110 GHz</td>
<td></td>
<td>• Medium: 700 MHz - 110 GHz</td>
<td>• Optional: Near-field / Spherical</td>
</tr>
<tr>
<td></td>
<td>• Other bands possible upon request</td>
<td></td>
<td></td>
<td>• Large: 700 MHz - 110 GHz</td>
<td>• Near-field / Cylindrical</td>
</tr>
<tr>
<td></td>
<td>• 100 MHz - 110 GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max size of DUT</td>
<td>• On centered support column: as large as a standard laptop</td>
<td>• Up to 50 cm diameter</td>
<td>• During full rotation of the DUT, the radiating parts of the DUT must stay within the quiet zone</td>
<td>• Depending on the scan length and antenna length</td>
<td>• Depending on the scan length and antenna length</td>
</tr>
<tr>
<td></td>
<td>• On offset column for chip measurements: 5 cm x 5 cm (chipset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna directivity</td>
<td>• Low to High</td>
<td>High</td>
<td>Medium to High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Measurement speed</td>
<td>• Standard</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
<td>Standard</td>
</tr>
<tr>
<td>Industries</td>
<td>• Telecom</td>
<td>Aerospace & Defense</td>
<td>Aerospace & Defense</td>
<td>Aerospace & Defense</td>
<td>Aerospace & Defense</td>
</tr>
<tr>
<td></td>
<td>• Academic & Research institutes</td>
<td>Telecom</td>
<td>Telecom</td>
<td>Telecom</td>
<td>Telecom</td>
</tr>
<tr>
<td></td>
<td>• Automotive</td>
<td>Automotive</td>
<td>Automotive</td>
<td>Automotive</td>
<td>Automotive</td>
</tr>
<tr>
<td></td>
<td>• Telecom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Automotive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Academic & Research institutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System name

<table>
<thead>
<tr>
<th>HScan</th>
<th>T-DualScan</th>
<th>G-DualScan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenna</td>
<td>Antenna</td>
<td>Antenna</td>
</tr>
<tr>
<td>measurement</td>
<td>measurement</td>
<td>measurement</td>
</tr>
<tr>
<td>Pulsed</td>
<td>Pulsed</td>
<td>Pulsed</td>
</tr>
<tr>
<td>measurement</td>
<td>measurement</td>
<td>measurement</td>
</tr>
<tr>
<td>Phased array</td>
<td>Phased</td>
<td>Phased</td>
</tr>
<tr>
<td>antenna</td>
<td>array</td>
<td>array</td>
</tr>
<tr>
<td>measurement</td>
<td>measurement</td>
<td>measurement</td>
</tr>
</tbody>
</table>

Applications

- Chip measurements
- Miniature connectorized antenna measurements
- Measurements of laptops and other devices
- Characterization of small and high gain antennas
- Millimeter wave applications
- Production testing
- Antenna measurement
- Radome measurement
- RCS measurement
- High gain antenna testing
- Near-field focused antenna testing
- Phased array antenna measurement
- Array illumination assessment
- Array element failure analysis
- Phased array antenna testing
- High gain antenna testing
- Near-field focused antenna testing
- Array illumination assessment
- Array element failure analysis
- Space-borne antenna measurements
- Payload testing
- Phased array antenna testing
- High gain antenna testing
- Array illumination assessment
- Array element failure

Technology

- Near-field / Spherical
- Far-field / Spherical
- Compact Range
- Compact Range
- Near-field / Planar
- Optional: Near-field / Spherical
- Near-field / Cylindrical
- Optional: Near-field / Spherical
- Near-field / Cylindrical
- Near-field / Spherical
- Far-field / Spherical

Frequency bands

- HScan: 50 - 110 GHz
- T-DualScan: 18 - 50 GHz, optional
- Other bands possible upon request
- HScan: 50 - 110 GHz
- T-DualScan: 18 - 50 GHz, optional
- Other bands possible upon request
- HScan: 50 - 110 GHz
- T-DualScan: 18 - 50 GHz, optional
- Other bands possible upon request

Max size of DUT

- HScan: On centered support column: as large as a standard laptop
- On offset column for chip measurements: 5 cm x 5 cm (chipset)
- Up to 50 cm diameter
- During full rotation of the DUT, the radiating parts of the DUT must stay within the quiet zone
- HScan: Depending on the scan length and antenna length
- HScan: Depending on the scan length and antenna length
- HScan: 7 m diameter

Antenna directivity

- HScan: High
- HScan: Low to High
- T-DualScan: High
- G-DualScan: High
- T-DualScan: Low to High
- G-DualScan: High

Measurement speed

- HScan: Multi-Probe: 10 times faster than standard
- T-DualScan: Single-probe: Standard
- G-DualScan: Multi-Probe: 10 times faster than standard
- HScan: Multi-Probe: 10 times faster than standard
- T-DualScan: Single-probe: Standard
- G-DualScan: Multi-Probe: 10 times faster than standard
- HScan: Multi-Probe: 10 times faster than standard
- T-DualScan: Single-probe: Standard
- G-DualScan: Multi-Probe: 10 times faster than standard

Industries

- Telecom
- Academic & Research institutes
- Aerospace & Defense
- Telecom
- Research institutes

- Aerospace & Defense
- Telecom
- Aerospace & Defense
- Telecom

Website product page

- HScan: http://www.mvg-world.com/fr/HScan
- T-DualScan: http://www.mvg-world.com/fr/T-DualScan
- G-DualScan: http://www.mvg-world.com/fr/G-DualScan
Single-probe systems
Each Single-probe system has its own unique model number to facilitate the ordering process. For example, in the CR-M series, there are CR-M12, CR-M16, CR-M20. If customization is required, your local sales representative will provide you with the list of referenced components.

Multi-probe systems
Our multi-probe system part numbers include the system model name and the probe array part numbers, according to the following scheme: Model-{Array1}-{Array2}-…

The model field can have the following values
- StarLab
- StarMIMO
- SG 32
- SG 42
- SG 64
- SG 128
- SG 3000F
- SG 3000M
- SG 4100F
- StarBot 4200
- StarBot 4300
- T-DualScan
- G-DualScan

Array part numbers are composed of the following fields
- **[Distance]** - **[Probes]** - **[Number of Probes]** - **[Distance between probes]** according to these rules:

<table>
<thead>
<tr>
<th>Field</th>
<th>Linear array</th>
<th>Circular array</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Distance]</td>
<td>Distance between first and last probes, in mm</td>
<td>Internal diameter in mm</td>
</tr>
<tr>
<td>[Probes]</td>
<td>The probe model or list of probe models (if probes are interleaved)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comprising the array, selected from:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DP70-450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DP400-6000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DP6000-18000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>And separated by “/” if necessary</td>
<td></td>
</tr>
<tr>
<td>[Number of Probes]</td>
<td>The number of each probe model separated by “/” if necessary</td>
<td></td>
</tr>
<tr>
<td>[Distance between probes]</td>
<td>The distance between probes in mm</td>
<td>The angle between probes in degrees</td>
</tr>
</tbody>
</table>
> **WIDEBAND DUAL POLARIZED PROBES**

Three types of probes and several sizes of supporting structures are available for measurements covering the 70 MHz to 18 GHz frequency range. Probes designed to reach 40 GHz are currently under development. Meanwhile, 40 GHz systems can be delivered using a combination of single probe and MVG’s multi-probe technology. The wide bandwidth of our systems offers an additional advantage of increased speed in the ability to measure wide band and multi-band antennas without changing probes.

Three probes that can be interleaved*

<table>
<thead>
<tr>
<th>Product reference</th>
<th>DP 70-450</th>
<th>DP 200-6000</th>
<th>DP 400-6000</th>
<th>DP 6000-10000</th>
<th>DP 6000-18000</th>
<th>DP 200-10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band</td>
<td>0.07 GHz - 0.45 GHz</td>
<td>0.4 GHz - 6.0 GHz</td>
<td>6.0 GHz - 18 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended frequency band</td>
<td>0.2 GHz - 6.0 GHz</td>
<td>6.0 GHz - 10.0 GHz</td>
<td>0.2 GHz - 10.0 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture size</td>
<td>247 mm x 247 mm</td>
<td>63 mm x 63 mm</td>
<td>22 mm x 22 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample ordering code:
- StarLab 6 GHz: StarLab-{[900]}-[DP400-6000]-{[15]}-{[22.5]}
- StarLab 18 GHz: StarLab-{[900]}-[DP400-6000/DP6000-18000]-{[15/14]}-{[11.25]}
- SG 64-L: SG64-{[4200]}-[DP400-6000]-{[63]}-{[5.29]}
- …

* Interleaved arrays are considered one array.

Hybrid systems

A hybrid system consists of both a multi-probe and a single-probe configuration. Please use the same ordering process given above for multi-probe and single-probe systems. Indicate the single probe information first, then the multi-probe information.
MVG - About Us

The Microwave Vision Group (MVG) has developed unique expertise in the visualization of electromagnetic waves. These waves are at the heart of our daily lives: smartphones, computers, tablets, cars, trains, planes - these devices and vehicles would not work without them. MVG expertise brings measurement solutions to R&D teams for the characterization of antennas and their performance within these devices, and chamber solutions for EMC testing. MVG innovation remains focused on supplying R&D teams with the most advanced EMF measurement technology on the market.

Contact your local sales representative for more information

mvg-world.com
salessteam@mvg-world.com