STARLAB Compact. Proven. Now purpose-built for every mission. # The New StarLab Portfolio For over a decade, StarLab has supported hundreds of companies and research laboratories worldwide, recognized for its compact footprint, measurement reliability, and intuitive operation. From satellite antenna development to IoT and 5G testing, it has helped accelerate innovation across industries without compromise. As testing requirements evolve, with higher frequencies, more integrated devices, and tighter links between hardware and software, a new approach is needed. Introducing the StarLab Portfolio Suite: a fully integrated line of OTA and passive test systems, built to meet today's demands and adapt to tomorrow's challenges. - + Covers testing needs from basic validation to defense-grade R&D - + Offers modular software bundles tailored to your workflow - + Supports flexible, scalable configurations to grow with your needs Choose the right system for your requirements — and move faster with confidence! #### Tailored Solutions for Your Measurement Needs Each system in the StarLab Portfolio Suite offers specific capabilities to match your goals #### Affordable OTA Testing Made Easy The entry level OTA system with essential passive functionalities. OTA Non-signaling Uplink signal test available as optional. #### All-in-One OTA & Passive OTA-friendly system delivered with advanced OTA software pack. Allow for essential passive testing and optional advanced passive capabilities. All OTA signaling test protocols available. OTA Non-signaling Uplink signal test and API available as optional. #### Versatile Platform for R&D Covers 650 MHz-18 GHz with interleaved probes. Includes Passive Advanced, and gives access to cylindrical config, and full OTA support. API & OTA Non-signaling uplink included to the Developer-Mode and downlink available. Academic version available. #### MAIN FEATURES #### Technology - Near-field/Spherical - □ Near-field/Cylindrical #### Measurement capabilities - Gain - Directivity - Beamwidth - Cross polar discrimination - Sidelobe levels - 3D radiation pattern - Radiation pattern in any polarization (linear or circular) - Antenna efficiency - TRP, TIS, EIRP, and EIS #### SYSTEM CONFIGURATIONS #### Equipment - Arch with probe array, AUT positioner - Control unit - Power and control unit - Tx and Rx amplification units - Instrumentation rack - Uninterruptible power supply - Vector network analyzer #### Add-ons - □ Shielded anechoic chamber (OTA testing) - □ Linearpositioner for linear array antenna measurements (cylindrical testing) - **OTA Equipment** - □ Radio communication tester - □ Active switching unit - □ Transfer switching unit #### Max size of DUT - 45 max diameter - Up to 400 cm L x 45 cm W for cylindrical set-up (only on Pro and Pro+) #### Max. weight of DUT (centered load) - 10 kg on polystyrene mast 50 kg on ultra-rigid mast - 80 kg for cylindrical mode #### Accessories - Reference horns - PC - Ultra-rigid mast □ Laptop support interface - ☐ Hand and head phantom - □ Reference antennas - □ Rail system for cylindrical mode #### Services - Installation - Training - Warranty □ Post warranty service plans Included Optional Required ### **Test Power Without Compromise** Frequency range extended to 40 GHz with interleaved probes. Gives access to cylindrical config, and full OTA support. API & OTA Non-signaling uplink included to the Developer-Mode and downlink available. Academic version available. #### The Ultimate Test System Covers up to 50 GHz. Available in Wideband or Passive Special versions. Suitable for passive and OTA testing. API & OTA Non-signaling uplink included to the Developer-Mode and downlink available. US Defense-grade option. Academic version available. Rentable. # SYSTEM OVERVIEW # Cutting-edge Probes Up to 3 different types of probes to cover frequency bands from 650 MHz - 50 GHz Low directional, dual-polarized ### High Accuracy Reference Antennas For reference measurements # High Precision Unlimited Sampling The mechanical rotation of the arch in elevation allows for unlimited sampling of the DUT ## Sturdy Transparent Positioner Rigid microwave transparent mast or high precision metallic mast #### Accurate Stabilizers Fine level adjustement on PRO+ and ULTRA models for accurate positioning in the test environment ## Cylindrical Measurement StarLab Pro and Pro+ can switch to cylindrical near-field mode with a linear positioner, ideal for linear arrays like BTS or radar antennas. This setup also enables beam tilt and sidelobe measurements up to 70° from boresight. # StarLab # Extended Portfolio | 1222 | | |-------|--| | Starl | | StarLab Core⁺ StarLab PRO StarLab PRO⁺ StarLab ULTRA Wideband Passive StarLab ULTRA | | | Passive | Passive | Passive | Passive | Passive | Passive | | |------------------------------|---------------------------|--|---|--|---|--|---|--| | | Options | | | | On the fly measurement | Logo on Styrofoam CAP in the cha
the fly measurement / US Defense | | | | | Absorbers | Non-rubberized absorbers | Rubberized
absorbers | Rubberized
absorbers | Rubberized
absorbers | Rubberize | ed absorbers | | | | Cylindrical | Not a | vailable | Available | Available | Not av | vailable | | | | Probe Angle | 22.5 deg for LF & HF
11.25 deg for UHF | 11.25 deg | | | | Number of
Probes | Half arch: Single array
8x Low Frequency
probes
Total: 8 Probes | Full arch:
Single probe array
15x Low Frequency
(650MHz - 11GHz)
Total: 15 Probes | Full arch: Interleaved
15x Low Frequency
(650MHZ - 11GHz) + 14x
High Frequency (11GHz -
18GHz)
Total: 29 Probes | Full arch: Interleaved
14x Low Frequency (650MHz
- 11GHz) + 15xUHF (11GHz -
40GHz)
Total: 29 Probes | Full arch: Half-Half
H1: 7x Low Frequency (650MHz
-11GHz) + 7x High Frequency (11GHz -
18 GHz)
H2: 15x UHF (18GHz - 50GHz)
Total: 29 Probes | Full arch: Single probe
array
29x UHF (18GHz - 50GHz)
Total : 29 Probes | | | Functional
Specifications | Frequency | 650 MHz - 8 GHz | 650 MHz – 11* GHz
(*) 10 GHz for passive, 11 GHz for
OTA | 650 MHz - 18 GHz | 650 MHz - 40 GHz | 650 MHz - 50 GHz | 18 GHz - 50 GHz | | | | Developer-Mode (optional) | OTA Non-signaling UL | OTA Non-signaling UL & API | OTA Non-signaling DL | OTA Non-signaling DL | OTA Non-signaling DL | OTA Non-signaling DL | | | | Optional | OTA-IOT-Essential | Passive-Advanced
OTA-IoT (Essential &
Advanced) | Full OTA (Essential &
Advanced) | Full OTA (Essential &
Advanced) | OTA IoT (Essential & Advanced) | No OTA | | | Software | Included | Passive-Essential,
OTA-Mobile Cellular -
Essential (LTE) | Passive-Essential,
OTA-Mobile Cellular -
Advanced (NR) | Passive-Advanced Developer-Mode (OTA Non-signaling uplink & API) | Passive-Advanced
Developer Mode
(OTA Non-signaling uplink &
API) | Passive - Advanced, OTA-Mobile
Cellular - Advanced
Insight, Developer Mode (OTA
Non-signaling uplink & API) | Passive - Advanced,
Insight, Developer Mode
(OTA Non-signaling uplink
& API) | | | | Applications | Affordable OTA Testing
Made Easy | All-in-One OTA & Passive Testing up to 11GHz | Versatile Platform for
R&D Below 18 GHz | 40 GHz Test Power
Without Compromise | The Ultimate Test System | for Defense and Innovation | | # + # Software Bundles A modular suite designed to address the specific requirements of passive, OTA Mobile Cellular, IoT, and cylindrical testing. #### PASSIVE MEASUREMENTS #### Passive Essential The essential package for passive antenna measurements. It includes basic data acquisition with WaveStudio Passive and fundamental computation with MV-Sphere Basic. #### Passive Advanced An enhanced version of Passive Core with expanded computation and analysis tools. It includes MV-Sphere Advanced for improved spherical Near-Field to Far-Field (NF-to-FF) transformation, plus advanced features: #### + Computation tools: - MV-Holography computes the field on a planar surface (planar back-propagation) from FF or SWC data - MV-Iterative extrapolates a spherical field measurement in the truncated region (area in which data is not measured) to estimate the field over the full spherical measurement grid. - MV-Phase determines the phase center of an antenna using 3D FF data - MV-Translate & Rotate allows the Spherical FF data to be translated and rotated within the coordinate system #### + Analysis tool Antenna Analyzer is advanced analysis tool to extract most of antenna factors & radiation patterns from WS FF dataset ### **OTA MEASUREMENTS** #### OTA Mobile Cellular Essential The essential package for cellular testing, covering all legacy 2G-4G standards, including TDSCDMA, LTE Unlicensed and License Assisted Access LAA. It includes a legacy Radio Com Tester driver. #### OTA Mobile Cellular Advanced An advanced version of Mobile Cellular Essential with full 5G support. It adds NR Standalone (SA) and NR Non-Standalone (NSA) modes (LTE/NR anchored) and includes an advanced Radio Com Tester (single-box/one-box type) driver. #### OTA IoT Essential The essential package for IoT connectivity testing, covering all legacy WLAN and Bluetooth standards. It supports 802.11 a/b/g/n/ac/ax, Bluetooth, BLE (including test mode, advertising channels, and signaling), and includes a legacy Radio Com Tester driver. #### OTA lot Advanced An extended version of IoT Core with additional capabilities. It introduces support for the latest WLAN 802.11be standard, Standalone GNSS (GPS, etc.), and an advanced Radio Com Tester (single-box/one-box type) driver. ### Cylindrical Mode An add-on bundle that unlocks StarLab's cylindrical scanning capability, enabling passive antenna measurements and precise 3D characterization of long linear arrays—up to 4 meters in length. By overcoming the 45 cm DUT size limitation of spherical mode, Cylindrical Mode transforms StarLab's compact circular design into a powerful asset for evaluating large, linear antennas. A dedicated rail setup supports the DUT during measurement, enabling smooth and accurate cylindrical scanning. This expansion enhances StarLab's versatility for advanced passive measurements — without compromising accuracy and with minimal impact on system footprint. #### <DEVELOPER/> MODE StarLab PRO and ULTRA Developer-Mode give you full control over system operations with both OTA Non-signaling (ONS) and API integration. Enables custom scripting and automation for advanced test scenarios. ### ONS (OTA Non-Signaling) Direct hardware control for custom OTA test scenarios via Python scripting in WaveStudio. Enables automated measurements of uplink/downlink signals. #### Software and Hardware API remote control Supports external scripting for automation and custom application integration for the control over MVG systems (Arch API) and software (Remote WaveStudio API). # Software Compatibility Matrix Discover which StarLab systems support which software bundles Cylindrical OTA and advanced features. Passive OTA <Developer/> MODE Mobile Cellular IoT MODE Essential Advanced Advanced **Essential** Essential Advanced API OTA NS UL ONS DL 0 StarLab Core StarLab Core StarLab PRO 0 0 0 0 0 StarLab PRO StarLab **ULTRA WB** StarLab ULTRA Passive ** OTA Non-signaling downlink * OTA Non-signaling uplink Optional # 650 MHz - 8 GHz | Specification | |---------------| | System Specification | | | | | |-------------------------------|-----------------------|-----------|--------------------------|-----------| | Measurement Time (10 Free | quencies) | | | | | AUT size 15cm - 2.4 GHz | | | 3 min | | | AUT size 15cm - 7.2 GHz | | 1 | 0 min | | | AUT size 45cm - 2.4 GHz | | 1 | 0 min | | | Typical Dynamic Range | | 50 | - 60 dB | | | Radiation Pattern | | | | | | Accuracy | Соге | 10dBi AUT | 20dBi AUT | 30dBi AUT | | Peak Gain | 0.65-1GHz | <± 2.0 dB | | | | Accuracy | 1- 8GHz | <± 1.0 dB | <± 0.9 dB | | | -10 dB Sidelobe | 0.65-1GHz | <± 2.1 dB | | × | | Accuracy | 1- 8GHz | <± 1.1 dB | <± 0.9 dB | | | -20 dB Sidelobe | 0.65-1GHz | <± 5.0 dB | | | | Accuracy | 1- 8GHz | <± 2.9 dB | <± 1.1 dB | | | -30 dB Sidelobe | 0.65-1GHz | | | | | Accuracy | 1- 8GHz | • | <± 3.0 dB | | | Peak Gain Repeatability | <± 0.5 dB | | | | | Probe Network | 0.65 - 8 GHz 8 Probes | | | | | Mechanical characteri | stics | | | | | External dimensions of Star | Lab | 1.9 | x 1.1 x 2.0 m (L x | W x H) | | Probe array internal diameter | er | 0.9 m | | | | Optional anechoic chamber | size | 2.4 | x 2.4 x 2.4 m | | | Angle between probes in the | e same frequency band | 22. | 50° | | | DUT Max. Weight | | | | | | Styrofoam mast | | 10 (| <g< td=""><td></td></g<> | | | Ultra rigid mast | | 50 l | kg | | | | | | | | Not available Linear antenna # 650 MHz - 11 GHz ## System Specification | Measurement Time (10 Freque | encies) | | | | |-----------------------------|-----------------|-----------|------------|-----------| | AUT size 15cm - 2.4 GHz | | 1 min | | | | AUT size 15cm - 11 GHz | | | 8 min | | | AUT size 45cm - 2.4 GHz | | | 5 min | | | Typical Dynamic Range | | | 60 - 70 dB | | | Radiation Pattern Accura | эсу | 10dBi AUT | 20dBi AUT | 30dBi AUT | | Pools Goin Accuracy | 0.65-1GHz | <± 1.5 dB | * | | | Peak Gain Accuracy | 1-11GHz | <± 0.8 dB | <± 0.7 dB | | | - | 0.65-1GHz | <± 1.6 dB | | | | -10 dB Sidelobe Accuracy | 1-11GHz | <± 0.9 dB | <± 0.6 dB | | | -20 dB Sidelobe Accuracy | 0.65-1GHz | <± 4.5 dB | | | | -20 db Sidelobe Accuracy | 1-11GHz | <± 2.7 dB | <± 0.9 dB | * | | 20 dD Cidalaha Assurasy | 0.65-1GHz | | | | | -30 dB Sidelobe Accuracy | 1-11GHz | | <± 2.7 dB | | | Peak Gain Repeatability | <± 0.3 dB | | | | | Probe Network | 0.65-11GHz - 15 | Probes | | | #### Mechanical characteristics | External dimensions of StarLab | 1.9 x 1.1 x 2.0 m (L x W x H) | |---|-------------------------------| | Probe array internal diameter | 0.9 m | | Optional anechoic chamber size | 2.4 x 2.4 x 2.4 m | | Angle between probes in the same frequency band | 22.50° | | DUT Max. Weight | | | Styrofoam mast | 10 kg | | Ultra rigid mast | 50 kg | # 650 MHz - 18 GHz | | 0112 | | | | | |-----------------------------|------------------------|-----------|-------------------|-------------|--| | System Specification | | | | | | | Measurement Time (10 Fre | equencies) | | | | | | AUT size 15cm - 2.4 GHz | | | 1 min | | | | AUT size 15cm - 18 GHz | | | 18 min | | | | AUT size 45cm - 2.4 GHz | | 5 min | | | | | Typical Dynamic Range | | | 60 - 70 dB | | | | Radiation Pattern Accuracy | | 10dBi AUT | 20dBi AUT | 30dBi AUT | | | Dook Coin Acquirons | 0.65-1GHz | <± 1.5 dB | | | | | Peak Gain Accuracy | 1-18GHz | <± 0.8 dB | $< \pm 0.7 dB$ | <± 0.6 dB | | | | 0.65-1GHz | <± 1.6 dB | | | | | -10 dB Sidelobe Accuracy | 1-18GHz | <± 0.9 dB | <± 0.6 dB | <± 0.4 dB | | | | 0.65-1GHz | <± 4.5 dB | | | | | -20 dB Sidelobe Accuracy | 1-18GHz | <± 2.7 dB | <± 0.9 dB | <± 0.6 dB | | | -30 dB Sidelobe Accuracy | 0.65-1GHz | × | | | | | | 1-18GHz | | <± 2.7 dB | <± 1.0 dB | | | Peak Gain Repeatability | <± 0.3 dB | | | | | | Probe Network | 0.65-11GHz - 15 Probes | 11-18GHz | - 14 Probes | | | | Mechanical character | -istics | | | | | | External dimensions of Sta | .rLab | | 1.9 x 1.1 x 2.0 m | (L x W x H) | | | Probe array internal diamet | ter | 0.9 m | | | | | Optional anechoic chamber | r size | | 2.4 x 2.4 x 2.4 m | | | | Angle between probes in the | ne same frequency band | | 22.50° | | | | DUT Max. Weight | | | | | | | Styrofoam mast | | | 10 kg | | | | Ultra rigid mast | | | 50 kg | | | | Linear antenna meas: | urement characteristio | :S | | | | | Geometry | | | Cylindrical | | | | Standard rail length | | | 6m 9r | n | | | Linear array antenna max l | ength | | 2.5m 4r | n | | | Linear array antenna max.v | weight | | 80 kg | | | | | | | | | | ## 650 MHz - 40 GHz | System | Specif | ication | |--------|--------|---------| | | | | | Measurement Time (10 Frequencies) | | |-----------------------------------|------------| | AUT size 15cm - 2.4 GHz | 1 min | | AUT size 15cm - 40 GHz | 45 min | | AUT size 45cm - 2.4 GHz | 5 min | | Typical Dynamic Range | 60 - 70 dB | | | | | Radiation Pattern Acc | :uracy | 10dBi AUT | 20dBi AUT | 30dBi AUT | |--------------------------|------------------------|----------------|---------------|-----------| | Peak Gain Accuracy | 0.65-1GHz | <± 1.5 dB | • | * | | Teak dail Accuracy | 1-11GHz | $<\pm 0.8 dB$ | $<\pm 0.7 dB$ | • | | | 11-40 GHz | <± 0.9 dB | <± 0.7 dB | <± 0.6 dB | | 10 dD Cidoloho Acquirocu | 0.65-1GHz | <± 1.6 dB | | | | -10 dB Sidelobe Accuracy | 1-11GHz | $< \pm 0.9 dB$ | - | | | | 11-40GHz | <± 1.0 dB | $<\pm 0.6 dB$ | <± 0.4 dB | | | 0.65-1GHz | <± 4.5 dB | | | | -20 dB Sidelobe Accuracy | 1-11GHz | <± 2.7 dB | <± 0.9 dB | | | | 11-40GHz | <± 3.2 dB | <± 1.0 dB | <± 0.6 dB | | -30 dB Sidelobe Accuracy | 0.65-1GHz | • | | | | -50 db oldelobe Accuracy | 1-11GHz | (F | $<\pm 2.7 dB$ | - | | | 11-40GHz | | <± 3.2 dB | <± 1.0 dB | | Peak Gain Repeatability | <± 0.3 dB | | | | | Probe Network | 0.65-11GHz - 14 Probes | 11-40GHz - 1 | 5 Probes | | #### Mechanical characteristics Ultra rigid mast | External dimensions of StarLab | 1.9 x 1.1 x 2.0 m (L x W x H) | |---|-------------------------------| | Probe array internal diameter | 0.9 m | | Optional anechoic chamber size | 2.4 x 2.4 x 2.4 m | | Angle between probes in the same frequency band | 22.50° | | DUT Max. Weight | | | Styrofoam mast | 10 kg | 50 kg # Linear antenna measurement characteristics | Geometry | Cylindrical | | |---------------------------------|-------------|----| | Standard rail length | 6m | 9m | | Linear array antenna max length | 2.5m | 4m | | Linear array antenna max.weight | 80 kg | | # StarLab ULTRA WB ## 650 MHz - 50 GHz | System Specification | | | | | | |---|-----------------------|-------------------------------|---------------|----------------------|--| | Typical Measurement Time | (10 Frequencies)* | | | | | | AUT size 15cm - 2.4 GHz | | 1.5 min | | | | | AUT size 15cm - 50 GHz | | 1.5 h | | | | | AUT size 45cm - 2.4 GHz | | 8 min | | | | | Typical Dynamic Range | 50 - 70 dB | | | | | | Radiation Pattern Accuracy | | 10dBi AUT | 20dBi AUT | 30dBi AUT | | | Peak Gain Accuracy | 0.65-1GHz | <± 1.5 dB | | | | | | 1-18GHz | $<\pm 0.9 dB$ | $<\pm 0.7 dB$ | * | | | | 18-50GHz | <± 0.9 dB | <± 0.7 dB | <± 0.6 dB | | | -10 dB Sidelobe Accuracy | 0.65-1GHz | <± 1.6 dB | • | | | | | 1-18GHz | <± 0.9 dB | <± 0.6 dB | | | | | 18-50GHz | <± 0.9 dB | <± 0.6 dB | <± 0.4 dB | | | -20 dB Sidelobe Accuracy | 0.65-1GHz | <± 4.5 dB | | | | | | 1-18GHz | <± 2.7 dB | <± 0.9 dB | | | | | 18-50GHz | <± 2.9 dB | <± 1.0 dB | -
<± 0.6 dB | | | -30 dB Sidelobe Accuracy | 0.65-1GHz | * | | | | | | 1-18GHz | | <± 3.2 dB | <± 1.0 dB | | | | 18-50GHz | | <± 2.9 dB | <± 1.0 dB | | | Peak Gain Repeatability | <± 0.3 dB | | | | | | Probe Network | 0.65-11GHz - 7 Probes | 11-18GHz - 7 Probes | | 18-50GHz - 15 Probes | | | | | | | | | | Mechanical character | | | | | | | External dimensions of StarLab | | 1.9 x 1.1 x 2.0 m (L x W x H) | | | | | Probe array internal diameter | | 0.9 m | | | | | Optional anechoic chamber size Angle between probes in the same frequency band | | 2.4 x 2.4 x 2.4 m | | | | | • | e same frequency band | | 22.50° | | | | DUT Max. Weight | | | | | | | Styrofoam mast | | 10 kg | | | | Measurement time can vary by VNA model & IFBW setup 50 kg Ultra rigid mast ## 18 GHz - 50 GHz | System Specification | | | | | | |--------------------------------|---------------|----------------------|-------------------------------|-----------|--| | Typical Measurement Time (10 | Frequencies) | | | | | | AUT size 15cm - 18 GHz | 4 min | | | | | | AUT size 15cm - 50 GHz | 1.5 h | | | | | | AUT size 45cm - 18 GHz | | 40 min | | | | | Typical Dynamic Range | | 50 dB | | | | | Radiation Pattern Accuracy | | 10dBi AUT | 20dBi AUT | 30dBi AUT | | | Peak Gain Accuracy | 18-50GHz | <± 0.9 dB | <± 0.7 dB | <± 0.6 dB | | | -10 dB Sidelobe Accuracy | 18-50GHz | <± 0.9 dB | <± 0.6 dB | <± 0.4 dB | | | -20 dB Sidelobe Accuracy | 18-50GHz | <± 2.9 dB | <± 1.0 dB | <± 0.6 dB | | | -30 dB Sidelobe Accuracy | 18-50GHz | • | <± 2.9 dB | <± 1.0 dB | | | Peak Gain Repeatability | <± 0.3 dB | | | | | | Probe Network | 18-50GHz - 29 | 18-50GHz - 29 Probes | | | | | Mechanical characteristic | s | | | | | | External dimensions of StarLab | | | 1.9 x 1.1 x 2.0 m (L x W x H) | | | | Probe array internal diameter | | 0.9 m | | | | | Optional anechoic chamber size | | 2.4 x 2.4 x 2.4 m | | | | | Angle between probes in the sa | | 11.25° | | | | | DUT Max. Weight | | | | | | | Styrofoam mast | | | 10 kg | | | | Ultra rigid mast | | 50 kg | | | | Measurement time can vary by VNA model & IFBW setup # Measurement Zone Capabilities # DUT size vs. frequency comparison #### StarLab Core to Pro+ #### StarLab ULTRA x3 Oversampling x5 Oversampling - x10 Oversampling — x2 Oversampling # Testing Connectivity for a Wireless World The Microwave Vision Group offers cutting-edge technologies for the visualization of electromagnetic waves. With advanced test solutions for antenna characterization, radar signature evaluation and electromagnetic measurements, we support company R&D teams in their drive to innovate and boost product development. For more information: mvg-world.com ____ Contact us: www.mvg-world.com/en/contact B