H Radar Cross Section MEASUREMENT SOLUTIONS

+ General Overview

and enhance stealth

capabilities

Radar Cross Section (RCS) is a measure of how visible an object is to a radar by quantifying the energy scattered back to the radar when the object is illuminated by an electromagnetic wave.

Operational complexity: Data processing, environmental control, and secure handling are key, especially in defense programs

+ MVG RCS Measurement Solutions

KEY FEATURES

Target

- Full-scale target measurement at short distances
- Applicable to both model and real targets - as-is or before take-off
- Fast check of platform RCS configuration
- Maintenance purposes during platform life cycle

Measurement Configuration

- SAR vertical scan (2D) in front of the target
- by means of Y tower scanner
- ISAR complete 3D scan by means of Y tower scanner and Pylon (AZ/EL)

Frequency

• 0.4 - 18 GHz (typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

KEY FEATURES

Pylon

 Changeable pylon tips for different measurement targets Pylon can be concealed within the concrete reaching into ground level for ease of target mounting

Adjustable Height Tx/Rx Station

• Different antenna height configurations, depending on target distance and frequency allows better ground bounce control

Clutter Control

• Different possible radar fence configurations to reduce ground bounce effect

Control Room

 Can be facilitated as fixed ground station or mobile down range vehicle

Frequency

• 0.4 - 18 GHz (typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

Advantages

• Facilitates full scale target measurement

• Real far-field target measurements

lobe to improve sensitivity

• Exploits ground bounce first multipath

at its real scenario aspect angle configuration

Advantages

- Allows real and reliable full-scale measurements at a short distance
- Exploits ground bounce first multipath lobe to improve sensitivity (for 2D measurements)
- Interference from ground bounce and residual clutter can be filtered out by exploiting the 3D acquisition and the visualization of the 3D image

SYSTEM OVERVIEW

Tapered Chamber

Why choose Indoor Anechoic Measurement Systems?

- Enables testing of Very Low Observability (VLO) capabilities
- Delivers high measurement accuracy
- Operates in an environmentally controlled setting (clutter, noise, temperature, etc.)
- Efficiency with respect to impacts from outdoor weather conditions
- Concealed facilities for R&D and testing of classified objects
- Multi purpose (material measurements, EMC, etc.)
- Suitable for large target objects (compact range / near-field)
- Comprehensive solutions for continuous frequency coverage from 100 MHz to 110 GHz

IIIIII.

KEY FEATURES

Reduced reflectivity

 Tapered walls design minimizes internal reflections by directing stray signals towards the chamber back wall

Clutter control

Fewer multiple reflections and reduced background noise, improving signal-to-noise ratio

Integrated tapered feed

For high cross-pol and planar wavefront control performances

Advantages

- Frequency Coverage: Provides the possibility to perform RCS measurements at the lower frequency range
- Cost-Effectiveness: Tapered chambers are generally less expensive compared to other solutions

Frequency

• 0.1 - 2 GHz (Typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

INDOOR RANGES Plane Wave Generator (PWG)

Advantages

- High measurement accuracy in the measurement of Very Low Observability (VLO)
- High system dynamic range and sensitivity
- Flexible and modular DUT positioning
- Dual use for RCS and antenna measurement Comprehensive continuous frequency
- coverage 0.7 110 GHz • Fast data acquisition and analysis
- Ideal for production line test and verification

CAPABILITIES

- Broadband coverage across the complete frequency range (0.7 - 110 GHz)
- Automatic feed selection for continuous full frequency coverage
- High system dynamic range and high sensitivity
- High cross-polar performances

Chamber clutter

• Well below RF system noise

Flexible and modular target positioning

• Pylon, Styrofoam, etc.

Reflector

• High surface accuracy to support mm-wave measurements

Frequency

• 0.7 - 110 GHz (typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

SYSTEM OVERVIEW

CAPABILITIES

- Gain
 - Beamwidth
 - Sidelobe levels
 - Radiation pattern in any polarization (linear or circular) and cross-polarization
 - Radome measurement
- Directivity
- 2D and 3D radiation patterns
- EIRP and G/T

Advantages

- Allows RCS measurements for very low frequencies
- Compact Range complementary solution
- Relative proximity to DUT
- Reduced chamber size
- Mitigated reflection from the chamber compared to compact ranges
- No direct coupling between DUT and PWG

Frequency

• 0.1 - 1.0 GHz | Sub 6 GHz (typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

INDOOR RANGES

Planar / Cylindrical Near-Field

INDOOR RANGES Dual Gantry Bi-Static (Material)

Advantages

- Allows RCS measurements of full-scale platform at short distance
- Suitable for upgrading existing EMC chambers with RCS measurement capabilities
- Cost effective solution for full scale targets measurements
- Better suitable for cluttered environment
- Allows SAR and ISAR imaging of the target • 2D and 3D Cylindrical Images of the target
- are obtained • 2D/3D SAR images are obtained with planar
- acquisitions, providing a better rejection of still clutter (zero doppler, etc)

CAPABILITIES

- Near-field to far-field correction in the ISAR software tool allows focalization of the radar image
- Effectively mitigate clutter through advanced data processing techniques and high-resolution capabilities

Compact Test Environment

• NF RCS ranges require much less physical space than traditional far-field ranges, making them ideal for indoor labs, production environments, or urban locations

Cost Efficiency

• By avoiding long distances needed in far-field setups, NF RCS ranges reduce infrastructure and operational costs

Enhanced Measurement Flexibility

• The test setup allows for multi-angle and multi-polarization scanning, and can handle complex test scenarios

SAR and ISAR Imaging Capabilities

- NF RCS systems can generate SAR (Synthetic Aperture Radar) and ISAR (Inverse Synthetic Aperture Radar) images, providing high-resolution radar imagery of static
- or moving targets
- SAR allows imaging by virtually moving the radar around a stationary target
- ISAR captures images of a moving target using its motion to synthesize the aperture. These capabilities are invaluable for feature identification, scattering analysis, and target classification

Frequency

• 1.0 - 40.0 GHz (typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

CAPABILITIES

- Equal radius gantry arms
- Incorporates anti-collision safety features
- Antenna measurement
- Monostatic / bi-static SER and diffracted field measurements, for material samples as a function of aspect angle and frequency, and diagnostic radar imaging for energy absorption uniformity verification
- Reflection coefficient of planar RAM/material samples as a function of incidence angle and frequency band in bi-static configuration or mono-static configuration at normal incidence
- Insertion loss (transparency) of material/FSS planar samples as a function of incidence angle and frequency, with rotation of the sample

Frequency

• 1.0 - 40.0 GHz (typically)

Performance

* Consult your local MVG representative for information on NERCS and dynamic range performance

MV-ISAR software tool is optimized for offline processing of RCS data collection, visualization, and analysis. Applying Inverse Synthetic Aperture Radar (ISAR) technology, it allows:

- Maximum flexibility in data processing
- Capacity to build user-customized sequences of processing steps
- Easy navigation and operation between different process buffers
- Advanced data analysis procedures for frequency response correction, RCS calibration, and highly cluttered environments
- RCS data processing in frequency and time domain
- Management of data for accurate visualization and analysis

https://www.mvg-world.com/media/1396/download/reference

For more information: https://www.mvg-world.com

Contact us: <u>www.mvg-world.com/en/contact</u>

