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Abstract—In a previous paper a referenceless measurement
set-up based on a reference antenna was used to characterize
the near-field radiation of antennas in the planar and spherical
multiprobe systems. This paper proposes an alternative technique
based on exploiting the intrinsic characteristics of multiprobe
systems. One of the antennas from the multiprobe arch is used
to retrieve the relative phase between measurement points. Post-
processing is needed since the relative phase between azimuth
cuts is lost. The advantages, limitations and results are shown.
The results demonstrate that the technique is very promising for
characterizing devices under certain conditions.

Index Terms—phase difference, post-processing, multiprobe,
antenna measurements.

I. INTRODUCTION

There is a clear demand of wireless communications,
whether it is 5G, Zigbee, Wi-Fi or any other technology. This
is leading to the necessity of integration of the devices, thus
the antenna is part of the overall design of the system. The
users can benefit from this integration, nevertheless there are
also a lot of challenges from the designing point of view.
The measurement of these devices is far from trivial, since
the signal from the source is not accessible and therefore the
phase can not be acquired. In other cases, it is not the fact
that the signal is not accessible but the unintended radiation
of the integrated device that needs to be measured.

Conventional near-field measurements can not deal with
these scenarios. There is a wide range of amplitude only
method solutions to retrieve the phase of the field. Holo-
graphic techniques [1] has been studied in the literature for
the planar geometry. It requires further hardware to generate
the reference field, and due to overlapping in the spectral
domain it may require a high sampling rate. The two scans
technique is also a possible solution, but the measurement time
is increased and it is very sensitive to the initial guess and
independence of the information obtained from both surfaces.
Mean errors about -35 dB were achieved in [2] by choosing the
proper initial guess and separation between acquisition planes.
Interferometry methods [3] or probe with multiple outputs
[4] have also been tested in the literature. The drawback of
interferometry is the necessity of extra hardware to process
the in-quadrature and in-phase combination of signals and the
risk of propagated errors. The errors may be minimized by
using linear combination of signals at different positions, but
the measurement time is increased.

In [5], a time domain over the air (OTA) measurement set-
up was introduced. A phase recovery unit that exploits the
radiation of the device to get a reference signal by using a
reference antenna was used. However, there are some limi-
tations mainly attributed to the interference of the reference
antenna, although post-processing techniques can minimize
this perturbation. For the spherical multiprobe system, average
errors below -38 dB where achieved for the measurement of
a linear polarized standard gain horn at 2.3GHz.

In this paper a contribution to the problem of characterizing
the relative phase between measurement probes is presented.
The technique is based on using one of the antennas from
the multiprobe arch. The solution proposed is in the middle
way of the solutions proposed in [3], [5]. The difference
with the last is that the linear combination of signals form
different probes in-phase and in-quadrature is substituted by
the relative phase calculated by using the top-probe from the
arch as a reference. This solution present a clear advantage
since the radiation of the device is not perturbed by a reference
antenna. Nevertheless, there are some challenges to face, like
the necessity of calibration and the unknown phase between
different azimuth cuts.

The paper is organized as follows: in Section II an explana-
tion of the multiprobe system and the phase retrieval algorithm
is given. Section III will show a simulation example for linear
polarization and will discuss some of the limitations and how
to solve them in a real scenario. In Section IV the proposed
technique is validated by measuring in a real multiprobe
system. Finally, Section V will present the conclusions and
future lines.

II. MULTIPROBE MEASUREMENT SYSTEM AND PHASE
RETRIEVAL ALGORITHM

Spherical multi-probe measurement systems are near-field
solutions designed to overcome high acquisition times that are
present in single probe solutions [6]. The probe array consisted
of a group of evenly spaced dual polarized elements along
a circumference. The measurements are performed by elec-
trically commuting between different outputs of a combiner
network. The whole sphere is sampled by rotating the device
under test (DUT) in azimuth. The array can also rotate around
its center and increase the sampling rate by the widely known
over-sampling factor. If passive measurements are performed,
the vector network analyzer (VNA) is connected to the DUT
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Fig. 1. Measurement set-up

and output of the combiner network. In this work, a low-cost
alternative based on the substitution of the VNA for a software
defined radio (SDR) receiver is implemented. The use of a
low-cost receiver is suitable for saving time and resources in
scenarios like electromagnetic compatibility (EMC).

The geometry of the problem can be seen in Fig. 1. The top-
probe of the measurement arch is going to be the reference
to retrieve the relative phase between sampling points. The
top probe will measure the projection of the electromagnetic
field into different directions when the DUT is rotating along
its axis. Therefore, the relative phase between cuts may be
reconstructed if the polarization properties of the field are cal-
culated. For the shake of simplicity non-oversampling scenar-
ios will be considered in the following derivation. Lets assume
that the even number N represents the probes that compose the
multiprobe system (the analogous would be done for an odd
number). Depending on the multiprobe system, the azimuth
range must go up to 180° or 360°. Then, if equi-sampling in
elevation and azimuth is assumed, the number of azimuth cuts
needed will be equal to 2N-2 (full range in azimuth) or N/2
(full range in elevation). When a measurement is performed,
the system is considered stationary for every azimuth cut. The
last means that the relative phase between probes of the same
cut is retrieved properly under ideal conditions. If full range
in azimuth is assumed, Eq. (1) represents the unknown phase
terms involved in the retrieval process:
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Emeas(sl) = Eref

Emeas (82) = E(SQ)e(j¢2)
(1)

Emeas (S2N—2) = E(SZN72)6j¢2N—2

In the last equation, Emws (S;) represents the sampled electric
field for each 4 acquisition in azimuth, whereas E(S;) is the
ideal field . The exponential term accounts for phase shifts
introduced for each cut due to the rotation of the top probe.
One way of retrieving the lost phase reference is by appealing
to Ludwig’s third definition of polarization for the top probe

[7]. The definition projects the measurements always into
a vector that has the same direction. Eq. (2) describes the
directional vectors used for the projection of the measured
electromagnetic field.

Ecp =0 COS(¢ - QSO) - ¢ SZTL(¢ - ¢0)

Exp =0 sin(¢ — ¢o) + ¢ cos(¢ — ¢o)
Therefore, the phase error will be projected into Ludwig’s
vectors and by comparing the retrieve phase for each cut
with respect to a reference cut, the relative phases can be
reconstructed. The term ¢ of Eq. (2) will be critical depending
on the received polarization, since to ensure certain level of
uncertainty it is necessary to estimate the phase error of the
Ludwig’s vectors with enough accuracy. To do that, the tilt
angle with respect to #-axis can be retrieved as described by
Eq. (3), where ¢ is the relative phase between Ey and Eg
components of the field ans 7 is the well known tilt-angle of
the polarization ellipse.

2

0= g — ¢
1 BB, ©)
7 = —atan(——=———=cos(d

If the tilt angle is calculated, then the term ¢y can be computed
for different cuts and the average value will give the direction
of the major axis of the polarization ellipse that should be
parallel to the direction of the Ludwig’s vectors. In this way,
the fields with the largest signal to noise ratio (SNR) are
weighted properly and the errors are minimized.

III. SIMULATED PHASE RETRIEVAL CAPABILITIES

From the previous considerations it is clear that the numer-
ical performance of the algorithm will depend on the SNR
on the top-probe and the purity of the measured polarization
ellipse (amplitude and phase errors introduced by the mea-
surement system). For the following simulations, only errors
due to the low-cost receiver will be considered, and the system
will be consider ideal. The results will provide a good insight
of the best results and limitations that will be found in the
system due to the receiver and SNR on the top probe. The
errors introduced in the real system will be evaluated by testing
measured data in Section IV.

The low-cost receiver is the same as the one used in [5]. The
empirical noise statistics of the receiver were characterized and
compared with a simulated signal model demonstrating the
good correlation between the model and the measurements.
Thereby, the signal model will be used to introduce errors in
amplitude and phase depending on the SNR of the sampled
probe and reference top probe.

The following simulations consider that each measurement
sample is contaminated with noise as described in Eq. (4); X
and X, refers to Gaussian distributions with 0 mean and
standard deviation equal to 1. The standard deviations o4,
and o4 account for the uncertainties depending on the SNR
of the top-probe (reference) and measurement probe. Thus, the
phase of the top-probe is considered zero and only amplitude
errors are introduced in this probe for different azimuth cuts.
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Fig. 2. Simulated acquisition for numerical validation

Esim = (|E;m| + 04 'X\Al) eJ(0t+0s-Xo) 4)

The errors introduced by the reference top-probe can be an-
alyzed without simulating electrically large problems. There-
fore, the effect of the noise introduced by the low-cost receiver
and the top probe reference channel will be analyzed for
electrically small problems for the shake of simulation time.
Without lost of generality, the simulation consists of an square
array of Hertzian dipoles along the xy-plane, see Fig. 2. The
square array side ’d” is 2\ and the measurement radius r”
5. Considering Eq. (5), the A6 and A¢ steps are 7.5°. The
simulations are done by considering full range in ¢, and 0
going from 0° to 180°.

N=kr+10 (5)

The worst case scenario will be faced for linear polarization.
The reference channel will be connected to one polarization of
the top probes. This will be translated into large phase errors
for ¢ cuts where the energy is projected into the orthogonal
polarization.

If the Hertzian dipoles are linear polarized in the x-direction
and the f-component of the field is considered as the reference
the phase errors after reconstructing the phase will be concen-
trated around ¢=90° and ¢=270°, see Fig. 3. In the figure, the
error is computed as described in Eq. (6) by comparing the
reference simulated field with the reconstructed one by using
Ludwig’s projections and choosing the proper value of 7. The
mean error for Ky and Ey; components is -68dB and -65dB
respectively. That is reasonable since the dynamic range of the
SDR is about 60dB.

€ (dB) =20 loglOlﬁref - Ereconstructed| (6)

However, the phase errors introduced for £, at $=90° and
¢=270° are very high. These errors will be translated into the
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Fig. 4. Far-field error for Ey, ¢ = 0°

modal expansion and will be propagated to the far-field, thus,
worsen the performance of the pattern estimation. When the
field is sampled properly, the amplitude of the cuts could be
maintain and apply phase interpolation. If this is done, the
errors are minimized, since the phase errors are minimized
and so the errors in the modal expansion.

The error analysis for the main cuts of the radiation pattern
in the far-field before and after applying the interpolation can
be seen in Figs. 4 and 5.

The good performance obtained by using interpolation in the
simulations is subject to the step needed in ¢ since the smaller
the step the closer the field will be to asymptote that makes
the reference signal tends to zero for ideal linear polarization.
Nevertheless, in a real scenario, the signal transmitted in the
orthogonal polarization will not be zero, and therefore this
problem just represents a worst case but not a real measure-
ment. In fact, even misalignment errors will help to mitigate
this error. Thereby, the level of the signal at the reference
top probe of the surrounding cuts will determine the level of
uncertainty of the interpolated cut. Levels around -30dB below
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Fig. 5. Far-field error for Ey, ¢ = 90°

the maximum of the major axis of the polarization ellipse
should be enough to provide low errors when calculating the
modal expansion. Otherwise, interpolation or other practical
approaches should be applied, like choosing a ¢ grid that
avoids the cuts with minimum power by maintaining the
required sampling step.

If circular polarization is used very low errors are expected,
since the SNR on the top probe when rotating in azimuth
does not decrease. The intermediate performance of the post-
processing algorithm is expected for a general elliptical polar-
ization. To summarize, the following challenges and solutions
will define the accuracy of the phase reconstruction if the
system is considered ideal and only errors due to the receiver
are considered:

o« Low SNR on the top probe. It can be compensated by
using the SDR receiver gain, that goes up to 60dB.

o Radiated polarization that tends to linear. Interpolation,
modal filtering or defining a new ¢ grid will help to
resolve this problem.

IV. MEASUREMENT SET-UP AND RESULTS

The previous analysis showed the potential of the technique
in order to reconstruct the radiated phase of a DUT by
using the top probe of a multiprobe system as a reference.
The main limitations of the system due to the receiver and
reference channel were analyzed and a simulated example was
presented. Finally, a measurement set-up based on the OTA
test system MiniLab from Satimo will be presented.

The radiation pattern of a standard gain horn antenna
(SGH2000) will be measured by the VNA and the proposed
technique. The antenna will be measured at 1GHz so that
oversampling is not needed in the MiniLab. In Fig. 6, the
measurement set-up can be seen. The antenna is slightly offset
with respect to the z-axis due to the interface. Nevertheless,
the two measurements will be done by using the same set-
up, thus the comparison between patterns can be performed
without introducing errors due to the positioning.

Fig. 6. MiniLab measurement set-up
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Fig. 7. Copolar phase on the top-probe for VNA measurement

A. Calibration

In [5] the calibration step was not necessary since the refer-
ence antenna was not part of the measurement system. If the
top-probe antenna is the reference, it is mandatory to calibrate
the SDR ports and the path differences between the probes
and the top-probe. Once it is done, the amplitude and phase
calibration coefficients are applied to the measurement of the
top-probe and the phase reconstruction can be implemented.

It is important to remark that probe calibration is also very
important if the aim is to minimize the phase reconstruction
error. To illustrate this, lets analyze the phase of the copolar
component according to Ludwig’s third definition of the
measurement of the SGH2000 by using the VNA, see Fig. 7.

The last figure represent the errors introduced in the copolar
vector due to inaccuracy in the probe correction. Since this is
the case, the problem to be solved is represented by Eq. (7),
where n is a complex noise term and € is a complex term that
accounts for amplitude and phase errors due to calibration.

E;e = E@ + N+ €cal
RO 7
E¢e = E¢ +n 4+ €cal

When forcing the copolar vector to have the same phase
for every ¢ cut at the top-probe, an error will be introduced
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Fig. 8. Copolar far-field radiation pattern of SGH2000, ¢ = 0°

with respect to the VNA measurements. This error can not
be neglected and only a proper calibration will remove the
uncertainty of phase errors introduced in Ey and Ey4. To
confirm that the calibration will reduce drastically the errors
introduced, the phase error of the copolar vector of the VNA
measurements was used to correct the retrieved phase by the
top-probe technique. In order to do that the retrieved copolar
was multiplied by the difference between the known copolar
phase from the VNA measurement and the extracted one.

B. Measurement results

The measurement results showed the effect of the cali-
bration errors. Moreover, between the VNA and top-probe
technique measurements the errors are worse because the
interface was not completely stable and it was necessary to
move the MiniLab between measurements to access the top-
probe, thus, introducing uncertainties between measurements.
In Figs. 8 and 9, the far-field radiation pattern and the error
can be observed. Despite the challenges described for the
measurement set-up the retrieved far-field is in good agreement
with the VNA measurements. The corrected results should
be interpreted as the results that could be obtained if the
calibration is performed carefully. In particular, the average
near-field errors of the measured points are improved from -
38dB to -48.2dB for Ey and from -37dB to -47.9dB for E.
Therefore if the calibration is applied properly the error could
be as good as these post-processed results.

V. CONCLUSION AND FUTURE LINES

The development of a low-cost multiprobe OTA measure-
ment system based on reconstructing the phase by using the
top-probe has been presented. First, some simulations has been
presented to show some of the limitations of the system. Linear
polarization or antennas with poor radiation towards the top
probe are the worst scenarios. Nevertheless, in a practical
measurement linear polarization will not be that critical. For
energy de-pointing from the broadside direction, the gain of
the receiver can be used to compensate in terms of SNR.
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Fig. 9. Crosspolar far-field radiation pattern of SGH2000, ¢ = 0°

The performance of the algorithm is strongly dependent on
the accuracy of the calibration coefficients. The effects of this
calibration has been presented and the ideal results that could
be expected if a good calibration is used has been estimated by
applying a correction factor. The good results demonstrate the
potential of the technique. Oversampling scenarios and more
challenging radiation patterns are under research.
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