
Near-Field (NF) Measurements and Statistical Analysis of 
Random Electromagnetic (EM) Fields of Antennas and 
Other Emitters to Predict Far-Field (FF) Pattern Statistics 

Barry J. Cown
Director, GEMTECH Microwaves, llc

2636 Caisson Court NW
Marietta GA 30064-1206

bjcown@yahoo.com

John P. Estrada
Director, Microwave Vision Group USA (MVG-USA)

2105 Barrett Drive, Suite 104
Kennesaw, GA 30144

john.estrada@mvg-usa.com

Abstract—This paper discusses the application of modern NF 
measurements and statistical analysis techniques to efficiently 
characterize the FF radiation pattern statistics of antennas and 
other EM emitters whose radiated EM fields vary erratically in a 
seemingly random manner. Such randomly-varying radiation has 
been encountered, for example, in measurements involving array 
antenna elements and reflector feed horn(s) containing active or 
passive devices that affect the relative phases and/or amplitudes 
of the pertinent RF signals in a non-deterministic manner [1-7]. 
In-Band (IB) as well as Out-Of-Band (OB) signals may be 
involved in some cases. Other possible randomly varying EM 
radiations of interest include leakage from imperfectly-shielded 
equipment, connectors, cables, and waveguide runs [8-9]

    I. INTRODUCTION

Previous work at GTRI [1-5,7] and at GEMTECH 
Microwaves (+) llc, [4]) involving coherent CW 
frequency domain measurements of randomly 
varying complex NF electric fields has shown that 
valid computations of key FF radiation pattern 
statistics can be achieved by making the appropriate 
Near-Field to Far-Field (NF-FF) transformations of 
the following measurement-derived quantities: a) 
the sample average value of the complex electric 
field at each NF measurement point, b) the sample 
average value (a real number) of the standard 
deviation or variance of the complex electric field at 
each NF measurement point, and c) the sample 
average values of the complex cross-covariance 
functions at all different NF measurement points. 

The key FF radiation pattern statistics of most 
interest are typically a) the statistical average FF 
radiation pattern, b) the standard deviation or 
variance, c) the probability density function (p.d.f.), 

and d) the Cumulative Probability Distribution 
(C.P.D.) from which all higher order statistical 
moments of interest can be calculated. 

The NF cross-covariance functions introduce a 
new level of complexity in NF measurements and 
analysis that is absent for “deterministic” EM field 
measurements because the cross covariance 
functions must be derived from the measured data 
for all different NF measurement points on the NF 
surface in order to compute valid Pattern FF 
statistics. However, MST arrays can be used to 
great advantage to achieve tolerable NF 
measurement times for the cross covariance 
functions and the aforementioned NF statistical 
quantities, thereby enabling succinct EMC 
characterizations of FF pattern statistics. 

II. PRIMARY OBJECTIVES AND SCOPE

The primary objectives of this paper are to 
examine the NF data measurement and statistical 
processing requirements to predict the FF pattern 
statistics for antennas whose radiated fields vary 
erratically in a seemingly random manner. The 
scope of this paper is focused primarily on coherent 
CW frequency domain measurements at in-band 
(IB) or out-of-band (OB) frequencies for which a 
reliable phase reference is available throughout the
entire NF measurement process. We note that a
novel time domain approach for measuring random 
emissions from equipments has been developed by 
researchers at SUPELEC [ 8,9].  
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III. ORGANIZATION OF PAPER

The remainder of this paper is organized as 
follows. The results of analyses and numerical 
simulations of a randomly-phased wire dipole array 
antenna to examine the significance of NF 
covariance functions on the FF pattern statistics are 
summarized in Subsection IV.A and IV.B.
Concluding remarks are contained in Section V. A
list of references is included at the end of this paper.  

IV. WIRE DIPOLE ARRAY

IV.A. NF MEASUREMENT SIMULATIONS

Measurement simulations were performed for
the array of nine center-fed, vertically-oriented 
dipoles shown in Figure 1 in order to gain insight 
into the role of NF covariance functions on FF 
pattern statistics. The array is fed by a constant 
voltage source and a phase shifter controls the 
relative phase of the RF signal in each element. The 
voltage phase shifts are independent identically 
distributed (i.i.d.) random variables that each follow 
a Gaussian distribution with zero mean and a 
standard deviation of 1.0 radian. All other RF and 
physical characteristics of the feed structure do not 
vary randomly and are not taken into account in the 
following analysis. A sketch of the simulated NF 
measurement situation is shown in Figure 1.  

A plot of the deterministic, non-random, 
relative power versus transverse distance along the 
NF measurement line is shown in Figure 2 for the 
in-band design frequency of 3.0 GHz. The NF data 
were computed for 65 measurement points along the 
transverse line spanning a total length of 8 o, where

o= wavelength at 3.0 GHz. Simulations were also 
performed for the out-of–band (OB) third harmonic 
frequency of 9.0 GHz. The requisite sample average 
values of the complex electric field and the variance 
at each NF sample point and the cross-covariance 
values at all other NF sample points were obtained 
by averaging the results of 50 “Monte Carlo” runs.
(The Monte Carlo runs are not included herein due 
to space limitations.) 

Figure 1. NF measurement geometry for wire dipole array.

Figure 2. Deterministic Relative Power versus transverse 
distance along  measurement line for 3.0 GHz

   
IV.B. KEY RESULTS  

VI.B.1. NF COVARIANCE FUNCTIONS

The salient aspects of the NF covariance 
simulations can be summarized with the aid of 
Figures 3 and 4 for the in-band 3.0 GHz frequency 
and the third harmonic 9.0 GHz out-of-band  
frequency, respectively. Each figure contains a plot 
labeled  “total” covariance and another plot labeled 
“intrinsic” covariance. The intrinsic covariance is 
the NF covariance that would be observed for the 
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electric fields radiated by isolated current elements 
in the absence of any mutual coupling among the 
radiating elements. The total covariance function 
includes the effects of mutual coupling which cause 
the element currents to be correlated. 

Inspection of the NF total and intrinsic 
covariance functions plotted in Figure 3 shows that 
the total covariance and intrinsic covariance
functions for 3.0 GHz differ noticeably, and the 
peak magnitude of the total covariance function is 
about 2. 7 dB greater than the intrinsic covariance
peak. This result is expected because the radiating 
current element correlations manifest themselves in
producing stronger NF covariances than would exist 
for isolated, non-interacting  elements.

Also note that the peak magnitudes of the total 
and intrinsic NF covariances for 9.0 GHz frequency 
are significantly weaker than for 3.0 GHz and that 
the intrinsic and total NF covariances differ only 
slightly. These behaviors are expected because the 
inter-element spacing in terms of wavelength is 
much greater for 9.0 GHz than for 3.0 GHz and, 
hence, the inter-element mutual coupling is 
correspondingly weaker than for 3.0 GHz. These 
trends in the NF covariance functions also manifest 
themselves in the behavior of the FF pattern 
statistics, as discussed in the next section.

    IV.B.2  RETRIEVAL OF NF COVARIANCE FUNCTIONS

It is possible to obtain useful estimates of the 
current covariance functions by applying linear 
operator theory and techniques to define the matrix 
relating element source currents to the measured NF 
covariance functions. The matrix is then solved by 
using the measured NF covariance functions as the 
known right-hand column vector. The matrix is 
nearly singular but it can be solved by applying 
Tanabe’s projection method or other solution 
methods that are designed to solve nearly-singular 
matrices [11]. Plots of the exact and retrieved 
current covariances are shown in Figure5.  

Figure 3. NF covariance function Cq’q for E(q=0) and E* at 
all other NF measurement points for randomly-phased 
dipole array of Fig 1, for in-band design frequency = 3.0 
GHz. A=Intrinsic, B= Total

Figure 4. NF covariance function Cq’q for E(q=0) and E* at 
all other NF measurement points for randomly-phased 
dipole array of Fig 1, for the out-of-band frequency of 9.0 
GHz. A=Intrinsic, B= Total, 

The exact and retrieved current covariances were 
then used to compute the NF covariance functions 
displayed in Figure 6. The retrieved NF covariance 
function agrees reasonably well with the exact 
function  and may provide useful engineering 
estimates for some purposes. Further investigations 
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are needed to assess the overall utility and accuracy 
of this technique for real-world antenna 
applications.  
  

  

IV.B.3 STATISTICAL AVERAGE  FF PATTERNS

The statistical average power density pattern 
<Pff> is readily computed via Equation (1) by 
computing the forward Fourier Transforms of the 
sample average electric field and its complex 
conjugate and the NF complex covariance 
functions. The angular brackets signify the 
statistical average values of the enclosed quantity. 
The statistical average values for the measured NF 
quantities are equal to the “sample” average values 
for these simulations.

The statistical average FF power patterns 
versus FF azimuth angle obtained from Equation 1
for the in-band design frequency of 3.0 GHz and for 
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Figure 6. Comparison of exact and retrieved NF 
Covariance functions Cq’q  for E(q=0) and E* at all other
NF measurement points.
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the out-out-band pattern at 9.0 GHz are displayed in 
Figures 7 and 8, respectively. The directivity at the 
top of all the statistical average FF pattern plots is 
21.15 dB above an isotropic radiator. 

Figure 7. Statistical Average FF Power Density Patterns
for randomly-phased wire dipole array of Fig. 1 for the in-
band frequency of 3.0 GHz for A=Intrinsic NF covariance 
functions, and B=Total NF covariance functions

Figure 8. Statistical Average FF Power Density Patterns 
for randomly-phased wire dipole array of Fig. 1 for the 
out-of-band frequency of 9.0 GHz, for A=Intrinsic NF 
covariance functions, and B=Total NF covariance 
functions.

Each figure contains two plots labeled A and B. 
The curve labeled B is obtained by transforming the 
NF data for the case involving the total NF 
covariance functions while the curve labeled A is 

for intrinsic NF covariance functions. Note that both 
Figures 7 and show typical behavior for Statistical 
Average FF patterns, namely attenuated mainbeam
peaks, null filling and raised sidelobe levels with 
respect to the corresponding quantities for 
deterministic FF patterns. Further inspection of the 
plots shows that the differences between the FF 
Statistical Average Plots for total and intrinsic NF 
covariance functions are noticeably more significant 
at the in-band 3.0 GHz than at the out-of- band of 
9.0 GHz. This behavior is expected because the
mutual coupling effects are correspondingly greater 
at 3.0 GHz than at 9.0 GHz, as previously noted in 
the discussion of the NF covariances. The peak 
magnitude of the Statistical Average FF patterns 
shown in Figure 5 for 3.0 GHz is about 3.8 dB 
higher for curve B, as expected due to the mutual 
coupling effects manifested in curve B.

IV.B.3. CUMULATIVE PROBABILITY DISTRIBUTIONS

Plots of the Cumulative Probability Distribution 
are displayed in Figures 9 and 10. Each figure 
shows the probability that the relative power density 
is less than or equal to the abscissa. The abscissa in 
Figure 9 is the relative power density expressed in 
real numbers, while the abscissa for Figure 10 is the 
relative power density expressed as decibels. The 
abscissas were scaled in this manner to illustrate the 
interesting fact that the cumulative distributions 
resemble Gaussian distributions when displayed in 
this manner.  

Figure 9. C.P.D. for a mainbeam or grating lobe region  
for the randomly-phased wire dipole array. 
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We note that FF power density pattern statistics 
closely follow the Nakagami “m”-Distribution at all 
relative power density levels for the wire dipole FF 
patterns examined  in this investigation [11,12].  

  V. CONCLUDING REMARKS

MST probe arrays can be used to great advantage 
for efficient measurements of NF data for random or 
non-random electromagnetic fields. MST arrays are 
scanned electronically along their length and moved 
mechanically in the orthogonal direction [9]. For 
example, the total time to acquire the complex fields 
data over an entire two-dimensional (2-D) planar, 
cylindrical, or spherical scan surface for a given 
operational mode of the AUT is typically 
accomplished in minutes rather than hours.  Such 
speeds are particularly advantageous for situations 
involving acquisition of random NF data for 
repeated Monte Carlo Trials. Dual MST probe 
arrays have been implemented and used for EMC 
applications by researchers at SUPELEC under the 
general direction of Prof. Jean-Charles Bolomey to 
further reduce NF data acquisition times [8,9]. This
system employs a novel “clutch” mechanism to 
allow passage of one of the arrays past the other.
This mechanism could possibly be automated and 
adapted for planar or cylindrical measurement
geometries employing dual linear MST probe arrays. 
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