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Abstract—The spherical wave expansion-based transmission 

formula allows to accurately evaluate the coupling (or S21 

parameter) between a transmitting and a receiving antenna. Its 

use as tool for probe corrected spherical near-field to far-field 

transformation is well accepted and documented. On the other 

hand, its direct use in the evaluation of antenna measurement 

performance has been exploited only in recent years. In this paper 

we will show how measurement performances predicted with the 

transmission formula compare with actual measurements. Taking 

as examples relatively complex antenna measurement systems like 

spherical near-field, plane wave generators and CATR, we will 

focus on the prediction of the accuracy of the measured radiation 

patterns, also including the approximation of reflections from the 

test environments, and on the evaluation of link budgets.  

I. INTRODUCTION 

Accurate emulations of antenna measurements are essential 
to predict the performance of measurement ranges and evaluate 
their uncertainty. Typical antenna test systems are based on the 
measurements of the coupling between a transmitting (or 
receiving) Antenna/Device Under Test (AUT/DUT) and a 
receiving (or transmitting) device such as probes, range 
antennas, CATR or Plane Wave Generators (PWG). Such 
coupling measurements can be efficiently and accurately 
emulated with the well-known Spherical Wave Expansion 
(SWE)-based Transmission Formula (TXF). As widely 
described in [1], from the spherical wave spectrum of both the 
TX and RX antennas, their direct coupling (i.e. the S21 
parameter) can be evaluated in any point in space as long as the 
minimum spheres of the two antennas do not intersect [1]. While 
the transmission formula is a standard tool for probe corrected 
spherical near-field to far-field (NF/FF) transformation [2], its 
direct use in the evaluation of antenna measurement 
performance has been exploited only in recent years [3]-[4]. 

A typical example is the evaluation of the probe influence in 
Spherical Near Field (SNF) measurements. Similarly, 
measurement performances of more complex CATR and PWG 
systems can also effectively be evaluated with the TXF. Such 
devices create a plane wave in a region called quiet zone (QZ) 
located in the NF of the CATR or PWG. Performances of such 
systems are normally expressed in terms of field uniformity in 
the QZ which hardly translate to direct contributions of an 
antenna measurement uncertainty analysis. Instead, actual 
CATR/PWG-based antenna measurements can be emulated with 
the transmission formula allowing a direct evaluation of the 
measurement accuracy [4]. 

The estimation of the measurement dynamic range is another 
important aspect during the design of an antenna measurement 
range. While in FF ranges this can easily be treated with the well-
known Friis’ formula [5], in NF and CATR/PWG systems it 
becomes more critical because of the “NF-effect” introduced by 
the reduced distance and the measurement device (e.g. probe, 
CATR reflector, PWG etc..). Considering gain-calibrated 
spherical wave spectra of both the TX and RX devices, the 
transmission formula can also be exploited to evaluate the actual 
signal level in test regions located at any distance (outside the 
minimum sphere) and hence to properly estimate the dynamic 
range of any antenna measurement system [6].  

Given all these valuable usages of the TXF, in this paper we 
will show for the first time how its predictions compare to actual 
measurements performed in the same conditions or with 
calculations performed with other techniques. 

II. THE SWE-BASED TRANSMISSION FORMULA 

The transmission formula (TXF) is reported in equations (1) 
and (2) below. 

𝑤(𝑟, 𝜒, 𝜃, 𝜑) = ∑ 𝑄𝑠𝑚𝑛
(4)
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 (2) 

Such formula expresses the complex signal received by a 

probe (𝑤) of known Spherical Wave Coefficients (SWC, 𝑅𝜎𝜇𝜈
𝑝

) 

as a function of the probes coordinates (𝑟, 𝜃, 𝜑) and 
orientation (𝜒) when an AUT/DUT described by its own SWC 

( 𝑄𝑠𝑚𝑛
(4)

) transmits. The symbols 𝑑𝜇𝑚
𝑛 (𝜃)  and 𝐶𝜎𝜇𝜈

𝑠𝑛(4)(𝑘𝐴)  are 

respectively rotation and translation operators that, together with 

the two complex exponentials ( 𝑒𝑗𝑚𝜑 and 𝑒𝑗𝜇𝜒 ), are used to 
describe the probe position/orientation in each measurement 

point. The quantity 𝑃𝑠𝜇𝑛
(4)(𝑘𝑟) is called probe response constant 

and is traditionally written in a separated term because it only 
depends on the probe SWC, the measurement distance and the 
frequency.  

Probe correction in SNF measurements is the most 
widespread application of the TXF [1],[7],[8]. In such cases the 
TXF is inverted by mean of the SWC of the DUT exploiting the 
measured signal 𝑤(𝑟, 𝜒, 𝜃, 𝜑)  and the probe SWC. Direct 
application of the TXF is normally employed to compute the FF 



radiation pattern from the SWC of the DUT. The TXF is also a 
very powerful and accurate tool for the evaluation/prediction of 
antenna measurement range performance. The only limitation of 
the TXF is that the coupling signal must be computed at 
sufficiently large distance so that the DUT and probe minimum 
sphere do not intersect [1]. Moreover, the TXF as reported 
above, only allows the computation of the direct coupling. The 
computation of the mutual coupling will not be treated in this 
paper. Interested readers can refer to the scattering matrix theory 
detailed in [1]. 

III. EVALUATION OF ANTENNA RANGE PERFORMANCE 

In this section we focus of the prediction of the antenna range 
performance by using the TXF. Examples of emulation of NF 
pattern measurements including the effect of generic probes and 
reflections from the measurement environment will be provided. 
Similarly, examples of Quiet Zone (QZ) probing with different 
measurement devices will also be shown.   

A. Antenna Pattern Measurement Emulation 

We consider the SNF measurement setup shown in Figure 1. 
The AUT is the X-band Standard Gain Horn (SGH820) mounted 
on a robotic-arm, used to perform the roll/azimuth (or φ/θ) 
scanning. The probe is the open-boundary quad-ridge horn 
(MVG QH800) mounted on the tower on the right side. As 
already pointed out in [7], such a probe has a high radial and 
azimuthal modal content, generating a complex (e.g. asymmetric 
sidelobes and cx-polar) and relatively highly directive pattern 
(approx. 15dBi). 

 

Figure 1.  Robotic-arm based SNF range setup. 

The blue solid/dashed traces in Figure 2. are the co-polar/cx-
polar normalized E-plane pattern at 10GHz, measured at 1.2m 
distance. From the full-wave simulated model of both SGH820 
and the QH800, the TXF has been applied to emulate the same 
SNF measurement. The obtained SNF pattern along the same cut 
is shown by the orange traces in Figure 2. The agreement with 
the real measurement is very good, both for the co-polar and cx-
polar pattern. The black trace in the same figure illustrates the 
SNF emulation of the SGH820 with an ideal Hertzian dipole. 
Significant differences on the sidelobes and cx-polar are 
observed. 

The good agreement between the measured and the emulated 
pattern with the TXF, allows to appreciate the accuracy of this 
measurement emulation approach for the evaluation of the 

antenna range performance. Emulations like this one for 
example, allow to evaluate the effect of the measurement probe 
when different post-processing are applied (e.g. NF/FF w/o 
probe correction, with first order probe correction etc..). 

 

Figure 2.  Comparison bewteen measured and emulated NF 

patterns at 1.2m with the TXF. Co-polar (solid) and cx-

polar (dashed) E-plane pattern. 

B. Anechoic Chamber Effect Emulation 

Another important aspect of the evaluation of the antenna 
range performance is the effect of the measurement 
environment, which could generate unwanted reflections. A 
relatively simple approach based on the combination of the 
SWE-based TXF and image-theory has already been reported in 
[3] and will only be recalled here. 

 

Figure 3.  Schematic of the SWE/Image-based method to 

evaluate the reflection effect. 

Let us consider the measurement scenario shown in Figure 
3. , where a PWG is used to illuminate an AUT mounted on a 
two-axis positioner (elevation-over-azimuth in this case). 
Rotations of the AUT that replicate the same actual movement 
of the device during the scanning can be applied on the (known) 
SWC of the AUT [1]. For each AUT position, the TXF is applied 
considering the (known) SWC of PWG. As also described in [4], 
this allows to directly evaluate the quality of the plane wave 
generated by the PWG with an emulation of a realistic antenna 
measurement scenario. Consequently, the derivation of certain 
contributions to the measurement uncertainty is much easier 
than an analysis based on the variation of the field in the QZ (i.e. 
QZ probing). 



To also include the residual effect of the walls of the 
anechoic chamber, the image of the of the AUT can be 
considered as shown in Figure 3. Without loss of generality, the 
image due to the right wall is shown. Such an image rotates 
backward, with respect to the AUT. For each position of the 
image, the coupling with the PWG is evaluated again with the 
TXF. Of course, in this case the SWC of the PWG must be 
properly counter rotated to account for the displaced position of 
the image. Once this “image-PWG” coupling is computed, it is 
weighted according the absorption properties of the materials on 
the wall, which depends on the incident angle (𝛽). This process 
is then repeated for each wall/ceiling/floor, and finally all the 
computed contributions are superposed.     

 

  

Figure 4.  Emulated gain pattern measurement of a base-

station antenna at 2 GHz performed with the PWG. 

Figure 4. shows an example of this method [3]. The 
considered PWG works in the 1.4-5.5 GHz frequency range and 
generates a 1.5m-diameter spherical QZ at 3.3 m from its 
aperture. The AUT is a slant-45 polarized base-station antenna 
at 2 GHz. The SWC of such an AUT have been obtained from 
real measurements. The modelled anechoic chamber has a 
rectangular footprint and is covered with 12-inch absorbers with 
-37 dB reflectivity at normal incidence. The emulated co-polar 
and cx-polar gain patterns (solid traces) are shown in Figure 4. 
for the free-space (red traces) and chamber scenarios (green 
traces). The pointwise Equivalent Noise Level (ENL) computed 
as weighed difference between the emulated measurement and 
the reference pattern is also shown (dashed traces). The chamber 
effect on the measured co-polar pattern is negligible (global 
RMS ENL is approx. -40 dB in both cases). The chamber has 
more impact on the cx-polar pattern where the global ENL 
increase from -61 dB (free-space) to -48 dB.  

C. Quiet Zone Probing Emulation 

The amplitude/phase uniformity of the QZ of a PWG, a 
CATR or a simple direct FF system is usually the main metric 
during the design stages of such systems. Emulating a QZ 
probing with realistic probes is also often needed because it 
allows fair comparisons of predicted and actual measured data. 
This can be performed with the TXF by considering the SWC of 
the radiating device (e.g. PWG, CATR or range antenna) and the 
SWC of the measuring probe. Since QZ field are usually 
expressed in terms of a cartesian grid, the “native” spherical 

coordinates 𝑤(𝑟, 𝜒, 𝜃, 𝜑) , normally used in the SWE-based 
TXF, must be properly converted to 𝑥𝑦𝑧-cordinates. Moreover, 
for each sampling position the probe SWC must be counter 
rotated to maintain the alignment with the boresight of the 
measurement system.  

It is pointed out that, like in the previous situation, the 
chamber effect can also be included in the QZ probing emulation 
with the same SWE/image-theory based approach.   

As an example, we consider a 10-40 GHz direct FF system 
with a closed boundary quad-ridge horn (QR18000) as range 
antenna. The spherical QZ is centered at 6m and has a diameter 
of 1m. From the SWC of the QR18000 at 30GHz, the down-
range QZ probing has been emulated in different conditions. The 
four maps of Figure 5. are the emulated probing with/without the 
chamber effect (4 x 7.5m chamber with -50dB wall reflectivity) 
and considering an ideal Hertzian dipole as probe (top) or a 
realistic probe, the QH4000 open-boundary quad-ridge horn, 
with approx. 16dBi directivity (bottom). The free-space 
emulations (left column) are useful to evaluate the taper 
introduced by the range antenna at such measurement distance. 
As expected, the real probe increases the taper giving rise to an 
overestimation of this quantity. This is due to the field 
integration over the probe aperture (i.e. spatial convolution). The 
emulation of chamber effect (right column) allows to estimate 
the QZ ripple. In this case, less ripple is observed when the 
QH4000 is used. This is due to the same field integration on the 
probe aperture, and the filtering effect of the probe pattern which 
attenuates the reflected signals from the chamber walls [9]. It is 
remarked that such types of emulations are very useful to better 
correlate predicted and measured QZ performances. 

 
 

 

 
 

 

Figure 5.  Example of QZ probing emulation with/without 

chamber effect, and with ideal dipole or realistic probe. 

Downrange of a FF system at 30GHz 



IV. LINK BUDGET EVALUATION 

The evaluation of the dynamic range of any antenna 
measurement system is of primarily importance. Accurate 
prediction of the link budget between the transmitting and 
receiving device is hence needed in the design stages of an 
antenna measurement system.  

The link budget of direct FF systems can be evaluated in a 
very straightforward way with the well-known Friis’ formula 
[5], which allows to compute the coupling between two antennas 
from the knowledge of their realized gain, the Free Space Path 
Loss (FSPL) and the conducted loss. 

On the other hand, in case of antenna ranges operating at 
reduced distance, the Friis’ formula cannot be used because the 
FF conditions are not met. NF, PWG and CATR systems fall in 
this category. In such cases, the SWE-based TXF can be used 
instead. Indeed, by using gain-normalized SWC [1] of the both 
transmitting and receiving devices, the TXF becomes a 
generalization of the Friis’ formula usable at any measurement 
distance larger than the sum of the minimum sphere radius of the 
TX and RX devices. Examples of link budget computations with 
the SWE-based TXF for different antenna measurement systems 
are provided here in sub-section A.   

Another way to extend the use of the Friis’ formula to 
measurement scenarios with reduced measurement distances, is 
to define a quantity called NF directivity, which takes into 
account for the radiation pattern deformation due to the shorter 
distance. A description of this approach along with an example 
will be reported in sub-section B.    

 

A. Examples of link budget calculation with TXF 

In this sub-section, three examples of link budget evaluation 
for antenna measurement systems operating at short distance (a 
SNF range, a CATR and a PWG) will be reported.   

 

1) Spherical NF range example 

The SNF measurement scenario already shown in Figure 1. 
is again considered. The S21 parameter in the boresight direction 
has been measured by calibrating the system at the ports of the 
transmitting/receiving devices (SGH820 and QH800 
respectively). The measured S21 over frequency is the trace with 
blue markers in Figure 6. The same S21 has been emulated with 
the TXF considering the gain-normalized SWC of the antennas, 
both obtained from full-wave simulations. The computed values 
are also reported in Figure 6. (See trace with orange markers). 
The agreement with the measured data is excellent. The 0.8dB 
maximum deviation at 10.5GHz is within the uncertainty of the 
modelled losses of both the considered antennas. 

 

 

Figure 6.  Comparison between measured and emulated on-

axis S21 parameter in the SNF setup. 

2) CATR example 

As a second example, let us consider a relatively large CATR 
nominally working from 400MHz. The dimension of the rolled-
edge reflector is approx. 13x11m and the focal distance is about 
19m. The QZ is centered at 25m from the center of the reflector.  

The link budget of a CATR system is normally calculated 
considering the Friis’ FF formula in the feed-to-reflector region, 
hence knowing the gain of the feed and assuming the feed-to-
reflector distance is sufficiently large to meet the FF criteria for 
the feed. 0dB FSPL are then considered in the reflector-to-QZ 
region, assuming that the reflected field is collimated on a flux 
of energy without losses. This approach is widely accepted in 
case of “well-designed” CATR systems [10].   

The link budget of this CATR has been calculated starting 
from 100MHz, a much lower frequency than the nominal one 
(400MHz). The calculation with the conventional Friis’ formula 
in the feed-to-reflector region is illustrated by the trace with blue 
markers in Figure 7. The computation with the SWE-based TXF, 
applied considering the SWC of CATR system obtained from 
full-wave simulation, is instead illustrated by the trace with 
orange markers. In both cases, an ideal Hertzian dipole has been 
assumed as receiving device in the center of the QZ. As can be 
seen, almost identical evaluation of the S21 parameters have been 
computed with the two methods at 300, 400 and 500MHz. More 
than 2dB deviations are instead obtained 100 and 200MHz, 
being outside the design frequency of such a CATR. Indeed, at 
such low frequencies, the system is not able to transform the 
spherical wave radiated by the feed, to a constant flux of energy. 
Consequently, the use of the conventional Friis’ formula is much 
less accurate at such frequencies because the required 
assumptions are not anymore valid. 

 

Figure 7.  S21 parameter in the QZ center of a low-

frequency CATR. Calculated with Friss FF formula and 

emulated with the TXF. 



3) PWG example 

Let’s now consider the Plane Wave Generator (PWG) array 
working in the range 0.6 – 6GHz [11] shown in Figure 8. A PWG 
is an array with suitable lattice and complex excitation 
coefficients able to generate a spherical QZ at relatively close 
distance. Like in a CATR, the QZ is on the NF region of the 
PWG, hence the conventional FF Friis’ formula cannot be used 
to evaluate the link budget. In this example we will show how 
the SWE-based TXF allows to accurately evaluate the link 
budget of such type of systems. 

 

 

Figure 8.  Sub-6GHz PWG. Measurement setup used to 

directly measure the S21 in the QZ center (left). 

Multiprobe SNF measurement setup (right). 

One of the advantages of an array-based PWG is its 
reconfigurability. Its complex coefficients can in fact be chosen 
arbitrarily to achieve the desired trade-off between QZ 
uniformity and power density available in the QZ (e.g. usually 
the QZ uniformity is improved at the expense of energy available 
in the QZ and vice-versa).  

The considered sub-6GHz PWG has been installed in the 
anechoic chamber shown on the left side of Figure 8. Three sets 
of complex excitation coefficients have been defined. For each 
configuration, the on-axis S21 parameter has been measured in 
the 3-6GHz frequency range with a dual-ridge horn antenna (the 
MVG SH2000) mounted on a robotic-arm at 1.7m distance. The 
measurements have been performed with a VNA calibrating the 
RF chain at the input ports of the PWG and of the SH2000 
respectively. The three measured S21 parameters are reported in 
Figure 9. (see solid traces). The first set of coefficients (blue 
trace) maximizes the power in the QZ but provides worse QZ 
performances. Conversely, the third set of coefficients, 
minimize the field variation inside the QZ but provides a reduced 
signal power level.  

To validate the TXF for such a type of systems, the same 
direct-coupling measurements have been emulated starting from 
the gain-normalized SWC of the PWG and the SH2000. The 
latter have been obtained from full-wave simulation. The SWC 
of the PWG have been obtained from gain calibrated SNF 
measurements performed in the SG64 multi-probe systems, as 
shown on the right side of Figure 8. More specifically, each 
individual sub-array of the PWG has been measured in an 
embedded configuration, and then the measured data have 
superposed with the same complex excitation coefficients 

previously considered. The emulated couplings with the TXF are 
compared in Figure 9 to the real S21 measurements. The 
agreement between real measurements and emulation is good. It 
is highlighted, that some PWG components have been replaced 
in the direct-S21 and SG64 measurement scenarios. This change, 
together with the uncertainties of both the involved 
measurements systems explains some larger deviations 
observable at some frequencies. 

 

Figure 9.  Sub-6GHz PWG. Comparison between measured 

and emulated S21 parameter in the QZ center, for 

different array exitation coefficients. 

B. Near Field Directivity and Gain 

We present here and alternative and straightforward way to 
evaluate the link budget of antenna measurement systems 
operating in the NF region of either the AUT and/or the 
measurement device. The idea is to generalize the Friis’ formula, 
considering a modified version of the gain of the transmitting or 
receiving device to take into account the deformation of the 
radiation pattern, due to the reduced measurement distance. 

In equation (3) the NF directivity, 𝐷𝑁𝐹(𝑟, 𝜃, 𝜑), of a generic 
radiating device is defined: 

𝐷𝑁𝐹(𝑟, 𝜃, 𝜑) =  4𝜋
𝑤𝑡(𝑟, 𝜃, 𝜑)2

∫ ∫ 𝑤𝑡(𝑟, 𝜃, 𝜑)2𝜋

𝜃=0

2𝜋

𝜑=0
sin 𝜃 𝑑𝜃𝑑𝜑

 
(3) 

 

 Such a quantity is obtained from 𝑤𝑡(𝑟, 𝜃, 𝜑)2 =

[|𝑤𝜃(𝜃,  𝜑)|2 + |𝑤𝜑(𝜃,  𝜑)|
2

], which is the radiation pattern at 

a generic distance 𝑟, from the origin of the coordinate system. 
When 𝑟  is sufficiently large, the conventional distance-
independent definition of directivity is obtained. 

The NF gain, 𝐺𝑁𝐹(𝑟, 𝜃, 𝜑), can then be defined as 
𝐺𝑁𝐹(𝑟, 𝜃, 𝜑) =  𝜂𝐷𝑁𝐹(𝑟, 𝜃, 𝜑) considering the efficiency of the 
radiating device (𝜂). 

Considering an electrically small receiving device, the Friis’ 
formula is extended to measurement systems operating in the NF 
region as follow: 

𝑆21(𝑟, 𝜃, 𝜑) =  
𝐺𝑁𝐹,𝑇𝑋(𝑟, 𝜃, 𝜑)𝐺𝑅𝑋(𝜃, 𝜑)

𝐹𝑆𝑃𝐿(𝑟, 𝑓)
 

(4) 

 
where the 𝐹𝑆𝑃𝐿(𝑟, 𝑓) = (4𝜋𝑟𝑓 𝑐⁄ )2(4𝜋𝑟𝑓 𝑐⁄ )2 are the free 
space path loss defined in the conventional way.  

To validate this alternative approach, we consider a low 
frequency PWG with starting frequency 𝑓0. Such a device has a 



diameter of approx. 4.5λ at 𝑓0, and generates a spherical QZ of 
1.5λ at 6.3λ distance. Figure 10. (left) illustrates the down-range 
S21-map of such a PWG computed with the SWE-based TXF, 
considering an ideal (lossless) beam forming network of the 
PWG and an Hertzian dipole as receiving device. The QZ can 
clearly been identified at about 6.3λ distance. Figure 10. (right) 
illustrate the S21 at different frequencies, for the three locations 
inside the QZ (𝐷1, 𝐷2, 𝐷3). The three traces are almost identical, 
remarking the good field uniformity inside the QZ. 

The S21 in the same three locations inside the QZ have been 
evaluated with the presented alternative method and reported on 
the right side of Figure 11. As can been seen, such achieved 
results are basically identical to those obtained with the TXF. 

To gain insights on this alternative approach, we consider the 
NF directivity patterns of the PWG, evaluated at the three 
distances inside the QZ (𝐷1, 𝐷2, 𝐷3), and, for only comparative 
purposes, at infinite FF distance.  In the boresight direction, the 
NF directivity at 𝑓0 gradually increases from approx. 10dBi to 
12.5dBi when increasing the distances inside the QZ. Such 
variation is compensated by the inverse of the FSPL which 
decreases of the same factor, giving rise to the (almost) constant 
field inside the QZ.    

 

Figure 10.  Low frequency PWG: Downrange S21-colormap 

at f0 (left); S21 parameter vs frequency emulated with 

the tx-formula in three different positions in the QZ. 

  

 

Figure 11.  Low frequency PWG: NF directivity pattern at 

different distance (left); S21 parameter vs frequency 

calculated from the NF gain/directivity and the FSPL in 

three different positions in the QZ.  

 

 

V. CONCLUSIONS 

In this paper the spherical wave expansion-based 
transmission formula has been presented as a powerful tool for 
the prediction of the antenna range measurement performance. 
The transmission formula allows to accurately compute the 
complex coupling between a transmitting and a receiving device 
from the knowledge of their spherical wave spectra. Rota-
translation of the spectrum of the devices allows the emulation 
of a variety of scanning schemes including the effect of possible 
reflections from the measurement environment. 

Different examples to show the accuracy of the transmission 
formula in the prediction of the effect of the measurement 
device, like a NF probe, a PWG or CATR reflector, have been 
reported. Moreover, considering similar examples, it has been 
shown how the transmission formula can be used to accurately 
compute the link budget between two radiating devices by 
knowing their gain-calibrated spectra. Finally, an alternative 
approach to evaluate the link budget of antenna measurement 
systems working at reduced distance has been presented. Such 
an approach is based on the “NF gain/directivity” definition and 
it allows a straightforward generalization of the well-known 
Friis’ far field formula.     
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