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Abstract—The reduction of acquisition time in planar near field
systems is a high interest topic when active arrays or multi beam
antennas are measured. Different solutions have been provided
in the last years: multi-probe measurements systems and the
Planar Wide Mesh (PWM) methodology, which implements a non
redundant sampling scheme that reduces the number of samples
required for the far-field transformation, are two of the most
well known techniques. This paper proposes the combination
of both approaches to derive a multi-probe PWM grid which
reduces the measurement times to the minimum. The method is
based on treating the near-field to far-field transformation as an
inverse source problem. The multi probe PWM is designed with
a global optimization process which finds the best measurement
locations of the probe array that guarantee a numerically stable
inversion of the problem. A simulated measurement example with
the VAST12 antenna is presented where the total number of
samples is reduced by a factor of 100 using a 4×4 probe array.

I. INTRODUCTION

Planar near-field measurements (PNF) [1]-[3] are a popular
alternative for large antenna testing. In this methodology the
antenna under test (AUT) is kept stationary and the radiated
field is scanned with the probe on a planar regular grid. This
leads to a very simple mechanical process, in contrast to
more complex techniques like CATR [4] or spherical near-field
testing [5]. Furthermore, when testing very directive antennas
pointing at boresight, the sampling step and scan truncation
can be relaxed achieving high reductions of measurement time.

Nevertheless, in some cases it is necessary to perform
measurements in large scanning planes with λ/2 sampling
step. This is the case of low directive AUTs where the near-
field is spread over a large plane, but also directive antennas
with steered beams like phased arrays. This may raise the
measurement times to the order of several hours per AUT,
leading to a bottleneck in the antenna development and testing
process. Thus, more advanced techniques must be derived to
reduce the measurement times.

The most straightforward way to do so is the use of multi-
probe systems [6]-[8], so several measurements can be per-
formed at the same time with the help of switches or multiple
receivers. A common implementation is the arrangement of
several probes over a column array which reduces the me-
chanical movement of the probe over the vertical dimension.

Fig. 1. Planar Wide Mesh measured by a 2× 2 probe array.

On the horizontal dimension the scanning is performed moving
the probe array as in a conventional single probe measurement.

An alternative approach is the use of advanced post process-
ing algorithms that reduce the number of samples required for
the near-field to far-field transformation. After a rigorous study
on the spatial bandwidth of electromagnetic fields [9][10] it is
possible to design a minimum redundancy planar grid, which
captures all information about the AUT. Such grid is called
Planar Wide Mesh (PWM) [11]-[13]. The PWM exhibits a
high density sampling in the regions close to the aperture and
then it decreases gradually as the probe gets far from the AUT.

This paper proposes the combination of multi-probe systems
with the concepts of PWM to minimize the measurement time
of large AUT and plane near-field measurements. The far-
field transformation will be formulated as an inverse problem,
being the AUT aperture fields the unknowns to be solved.
The success on solving this problem depends on its condition
number, which can be assessed with Singular Value Decom-
position (SVD) techniques [14]-[18]. A global optimization is
performed to find the measurement grid that maximizes the
condition number with the minimum number of samples. The
optimizer is constrained to find solutions which are compatible
with the geometry of the multi-probe system.



II. THEORETICAL BACKGROUND

A. Matrix problem formulation

An aperture antenna is considered in the center of the XY
plane of a spherical coordinate system. The field radiated by
the antenna on the z > 0 space admits an expansion in terms
of Plane Wave Spectrum (PWS):

P⃗ (kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
E⃗(x, y)e−j(kxx+kyy)dxdy (1)

being E⃗ the aperture field and P⃗ its PWS. The latter can be
used to compute the signal received by a probe on any point
r⃗ = (x, y, z) of the z > 0 subspace:

bprobe(r⃗) =

∫ ∞

−∞

∫ ∞

−∞
S⃗ (kx, ky) · P⃗ (kx, ky) e

jk⃗·r⃗dkxdky

(2)
being k⃗ the vector wave number (kx, ky, kz) and S⃗ the probe
spectrum.

In conventional planar near-field measurements, bprobe is
measured on a z = z0 plane and the AUT pattern is found
by inverting (2). In this paper we take a different approach by
defining the discretized matrix representation of (1-2):

p = C1eaper (3)

bprobe = C2p (4)

where p, bprobe and eaper are column vectors containing
the samples of the PWS, measured plane and aperture fields,
respectively. C1 and C2 are the radiation matrices performing
the Fourier integrals in (1) and (2) respectively. Eqs (3-4) can
be combined to relate directly the field on tha aperture to that
in the measured plane:

emeas = C2C1eaper (5)

Eq. 5 forms a system of equations that can be solved to
retrieve the aperture fields from the knowledge of the planar
near-field measurements. In a second step, the AUT PWS is
obtained using (3), which gives the radiation pattern of the
antenna.

B. Inversion problem using Truncated SVD

The number of equations in (5) is equal to the number of
near-field samples of the measurement. On the other hand,
the number of samples in the AUT aperture is a parameter
that must be adjusted. If a high value is chosen, we obtain
a detailed representation of E⃗ at the cost of increasing the
number of unknowns. Thus, there exist a trade off between the
proper representation of the aperture field and the numerical
stability of the system of equations.

A truncated SVD approach helps to balance this trade-off.
The SVD expansion of matrix C = C2C1 quantifies the
contribution of all aperture samples to the radiation on the
plane on the antenna. Therefore it is possible to eliminate
those unknowns which do not contribute significantly using
a reduced-order model of (5) [14]:

Fig. 2. Example of PWM illustrating the concept of mechanical and electrical
measurement points

bprobe = Cteap,t (6)

being Ct and eap,t the truncated versions of C and eap
respectively. Now this problem can be solved accurately by
a matrix inversion in a linear squares sense. Because the SVD
analysis only depends on the system matrix, these results are
independent of the aperture field specific distribution.

C. Optimization of the measurement locations

The success on solving (6) depends on the location of the
measurement samples. The goal is to design a measurement
grid that captures all the degrees of freedom of the aperture
field. This can be done by analyzing the condition number
of Ct [15][19]. A low condition number means an accurate
reconstruction of eap,t, which means low radiation pattern
uncertainties.

A global optimization algorithm is proposed to select the
best measurement points. To simplify the formulation, a square
symmetric mesh with equal rows and columns is considered.
This means we only need to optimize the location of the multi-
probe array over one dimension and then generalize it to the
plane. Such simplification reduces drastically the number of
optimization variables.

As an example, a MP system of 3×3 probes is considered.
This probe array is scanned in a grid of 6 × 6 “mechanical
points”, leading to a total of 18× 18 “electrical points”. The
resulting grid is depicted in Fig. 2. Due to the symmetry
considerations we have assumed, the complete grid is defined
by 3 “control points” which are (0.75λ, 2.5λ, 4.5λ).

The coordinates of the mesh control points are found by a
particle swarm optimization with the following parameters:

• Optimization variable: vector of Nc mesh control points.
• Objective function fitness: condition number of the sys-

tem matrix Ct.



Fig. 3. Singular value distribution of C for several AUT aperture sizes

• Auxiliary parameters: number of probes along each di-
mension Np, probe separation ∆p, AUT aperture dimen-
sion, frequency and measurement distance.

The value of Nc is yet to be defined. This parameter
regulates the total number of field samples in the grid so
it is critical for the system conditioning. There are no rules
for setting this parameter, so the optimal value is found by
performing sequential optimizations for different values. Low
values of Nc will yield too coarse grids with poor condition
numbers. As soon as we start increasing Nc the optimizer will
be able to design grids with better conditioning. This process
stops when the condition number reaches an acceptable value,
e.g. 104. In conclusion, this procedure finds the optimal grid
with the minimun number of samples that ensure a stable
matrix inversion.

III. NUMERICAL DISCUSSION

In this section we asses the feasibility of the proposed
technique in large AUTs using a common MVG multi-probe
module working in the 8-18 GHz band [20]. A planar near-
field measurement scenario is simulated with the following
parameters:

• AUT: D ×D aperture.
• Target validity angle: 70º.
• Np ×Np square array of probes with ∆p = 10 cm.
• Measurement distance z0 = 8λ.
Two different values of D will be used to assess the

influence of the AUT size in the design of the multi-probe
PWM grid. The first step is the identification of the number
of significant singular values of each aperture. Fig. 3 shows
the singular values of matrix C. For D = 10λ, the power
drops below −60 dB for a singular value index of 580. In other
words, 580 samples are sufficient to represent the aperture field
with a −60 dB accuracy. For the case of D = 20λ this number
increases to 1800 because the aperture has more degrees of
freedom.

Once the truncation index for the aperture fields has been
selected, the next step is the optimization of the mechanical
point coordinates. This process has been performed for several
frequencies and values of Np ranging from 4 to 8. Fig. 4
depicts the number of mechanical points on each dimension
of the optimized grids. For example, in the case of D = 20λ
at 18 GHz, a 4 × 4 probe array requires a grid of 13 × 13
mechanical points. For D = 10λ a 9× 9 grid is sufficient for

Fig. 4. Number of mechanical pints of the PWM for several probe arrays.

a stable matrix inversion because the number of unknowns is
also lower.

The relationship between number of mechanical points and
aperture size is not linear, because the values of Np and
∆p highly influence the performance of the optimization
algorithm. In general the optimization works best for low
values of Np. High values of this parameter lead to more
redundant grids which compromise the measurement time
reductions. Therefore, it is more convenient to arrange the
arrays is square patterns so the probes are distributed over
both vertical and horizontal axis.

IV. ANTENNA MEASUREMENT EXAMPLE

This section demonstrates the potential of the multi-probe
PWM approach for measurement of real antennas. At the
time of the measurements the proposed probe array was not
available, so a combination of measurements and simulations
has been performed instead.

The selected AUT is the Validation Standard antenna
(VAST12) [21], a 50 cm diameter offset reflector with astigma-
tism, which produces a non conventional radiation pattern very
convenient for inter comparison-campaigns [22]. The AUT
was measured at 12 GHz in a spherical near-field system and
its PWS is computed using the SWEtoPWE transformation
[23][24].

The PWS is used to simulate two PNF measurements in a
90×90 cm2 plane at a distance of 20 cm with a WR90 open-
ended waveguide. This yields a validity angle of around 70º.
Additive White Gaussian Noise of is added to simulate a finite
dynamic range of −50 dB. The first PNF is simulated with
a uniform λ/2 (1.25 cm) sampling step in both dimensions
to emulate a conventional measurement. The second PNF is
simulated in a PWM grid that is optimized as follows.



Fig. 5. Electrical points coordinates in a line of the optimized PWM (bottom)
and its exploded view (top).

First, matrix C is built according to the aperture dimensions
of the AUT. Secondly, C is truncated to a singular value level
of −60 dB. The resulting matrix Ct leads to an inversion
problem of 1800 unknowns. The next step is the optimization
of the probe array locations. A 4×4 array of probes separated
10 cm is used. The iterative optimization process is evaluated
to find the minimum number of mechanical points that give a
conditioning number lower than 104. This is achieved by 15
mechanical points, which amount to a total of 60 electrical
points on each dimension. Fig. 5 shows the distribution of the
electrical points. Since they tend to be concentrated around the
origin, an exploded view of the points has also been added.
Finally, the complete PWM grid is obtained replicating the
point distribution of Fig. 5 in both dimensions. This has been
depicted in Fig. 6, along with the amplitude of the near-field
on the sampling points.

The two simulated PNF grids are postprocessed to retrieve
the far-field of the AUT. The uniform sampling grid is pro-
cessed with traditional PWS techniques, so it can be used
as a reference for comparing the proposed method. Figs. 7
and 8 show the far-field E and H planes respectively. The
agreement between both approaches is perfect for both CP
and XP components, with error levels below the noise floor.
This demonstrates the accuracy and numerical stability of the
mesh designed by the global optimizer.

The potential reductions in measurement time of the pro-
posed approach are remarkable. The conventional PNF grid
has 148 × 148 points. The optimized PWM grid contains
60× 60 electrical points, but only 15× 15 mechanical points
are needed thanks to the multi-probe scanning. This gives
a reduction factor of around 10 times on each dimension,
i.e. a total of reduction of 100 times for the full plane. The
actual savings on measurement time will depend on the probe
movement and switching speed and whether the samples are
taken in step mode or on-the-fly.

Fig. 6. Electrical points coordinates of the optimized PWM and near-field.

Fig. 7. VAST12 E-plane pattern comparison

Fig. 8. VAST12 H-plane pattern comparison.



V. CONCLUSION

The capabilities of multi-probe arrays have been combined
with the concept of Planar Wide Mesh scanning to develop a
technique for fast antenna testing. The technique is based on
solving the near-field to far-field transformation problem as
a matrix inversion. The number of unknowns are minimized
using truncated SVD methodology. Finally, the measurement
point locations of the multi-probe array are obtained through
a global optimization process where the fitness function is
the condition number of the matrix to be inverted. The only
a priori information required about the AUT is the physical
extent of its aperture.

The feasibility of the proposed technique has been evaluated
for several frequencies and multi-probe configurations. The
use of a square array of probes has been proposed to distribute
the measurement time savings over the vertical and horizontal
dimensions. Nevertheless, other array configurations could be
implemented (linear or rectangular), by treating the vertical
and horizontal dimensions as two independent optimization
problems.

Preliminary simulations of the method show good numerical
stability against noisy data and drastic reductions in the
number of samples. This reductions become more apparent
for electrically large AUTs and measurement planes, where
traditional measurements require thousands of samples.

Future work consists in the validation of the method with
antenna measurement examples in a planar multi-probe set up.
This would help to quantify the reductions on measurement
time on real scenarios. In addition, the robustness of the
method against probe pattern imbalances and other non ideal
effects need to be analyzed.
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